Incomplete cell disruption of resistant microbes

[1]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[2]  Ross P. Carlson,et al.  Measuring Cellular Biomass Composition for Computational Biology Applications , 2018 .

[3]  N. Jehmlich,et al.  Differential sensitivity of total and active soil microbial communities to drought and forest management , 2017, Global change biology.

[4]  E. Nicolás,et al.  Ecological and functional adaptations to water management in a semiarid agroecosystem: a soil metaproteomics approach , 2017, Scientific Reports.

[5]  N. Jehmlich,et al.  The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi‐arid soils , 2016, Molecular ecology.

[6]  Jong-In Han,et al.  Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield. , 2015, Bioresource technology.

[7]  Kessy Abarenkov,et al.  Resistance and resilience of the forest soil microbiome to logging-associated compaction , 2013, The ISME Journal.

[8]  P. Webley,et al.  Mechanical cell disruption for lipid extraction from microalgal biomass. , 2013, Bioresource technology.

[9]  F. Bäckhed,et al.  The gut microbiota — masters of host development and physiology , 2013, Nature Reviews Microbiology.

[10]  P. Webley,et al.  Extraction of oil from microalgae for biodiesel production: A review. , 2012, Biotechnology advances.

[11]  E. Koonin The Logic of Chance: The Nature and Origin of Biological Evolution , 2011 .

[12]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[13]  R. Joergensen,et al.  The automated determination of glucosamine, galactosamine, muramic acid, and mannosamine in soil and root hydrolysates by HPLC , 2004 .

[14]  R. Lal,et al.  Iron (Hydr)Oxide Crystallinity Effects on Soil Aggregation , 2003 .

[15]  A. Pandit,et al.  Selective release of invertase by hydrodynamic cavitation , 2001 .

[16]  J. Baldock,et al.  Role of the soil matrix and minerals in protecting natural organic materials against biological attack , 2000 .

[17]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[18]  Malcolm R. Brown,et al.  Nutritional properties of microalgae for mariculture , 1997 .

[19]  Kenneth S. Suslick,et al.  Sonochemistry , 1990, Science.

[20]  Kenneth S. Suslick,et al.  The Chemical Effects of Ultrasound , 1989 .

[21]  M. V. Kelemen,et al.  Controlled cell disruption: a comparison of the forces required to disrupt different micro-organisms. , 1979, Journal of cell science.

[22]  L. E. Casida,et al.  Evidence for muramic acid in soil. , 1970, Canadian journal of microbiology.

[23]  K. F. Baker,et al.  Occurrence of Dormant Ascospores in Soil , 1963, Nature.

[24]  J. Senez I. INTRODUCTION , 1962, Bacteriological reviews.

[25]  M. L. Gray,et al.  THE USE OF POTASSIUM TELLURITE, SODIUM AZIDE, AND ACETIC ACID IN A SELECTIVE MEDIUM FOR THE ISOLATION OF LISTERIA MONOCYTOGENES , 1950, Journal of bacteriology.

[26]  David Brink,et al.  : A Review of the , 2018 .

[27]  A. John Mallinckrodt,et al.  Computational Fluid Dynamics: An Introduction , 2012 .

[28]  M. Rillig,et al.  Review Blackwell Publishing Ltd , 2006 .

[29]  S. Tabata,et al.  Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[30]  N. Rao Soil Microorganisms and Plant Growth , 1995 .

[31]  John Venn,et al.  The Logic Of Chance , 1888 .