Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides

Efficient and reliable on-chip optical amplifiers and light sources would enable versatile integration of various active functionalities on the silicon platform. Although lasing on silicon has been demonstrated with semiconductors by using methods such as wafer bonding or molecular beam epitaxy, cost-effective mass production methods for CMOS-compatible active devices are still lacking. Here, we report ultra-high on-chip optical gain in erbium-based hybrid slot waveguides with a monolithic, CMOS-compatible and scalable atomic-layer deposition process. The unique layer-by-layer nature of atomic-layer deposition enables atomic scale engineering of the gain layer properties and straightforward integration with silicon integrated waveguides. We demonstrate up to 20.1 ± 7.31 dB/cm and at least 52.4 ± 13.8 dB/cm net modal and material gain per unit length, respectively, the highest performance achieved from erbium-based planar waveguides integrated on silicon. Our results show significant advances towards efficient on-chip amplification, opening a route to large-scale integration of various active functionalities on silicon.Realizing efficient on-chip amplification in silicon is challenging due to either non-compatible integration or small gain per unit length of the amplifier material. Here, the authors report ultra-high on-chip optical gain in erbium-based hybrid silicon nitride slot waveguides with a monolithic, CMOS-compatible and scalable atomic-layer deposition process.

[1]  Zhen Sheng,et al.  The European BOOM Project: Silicon Photonics for High-Capacity Optical Packet Routers , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  G. Higashi,et al.  Sequential surface chemical reaction limited growth of high quality Al2O3 dielectrics , 1989 .

[3]  Jie Sun,et al.  CMOS-compatible 75 mW erbium-doped distributed feedback laser. , 2014, Optics letters.

[4]  Roberto S. Murphy-Arteaga,et al.  n型非晶質SiGe:H/p型結晶質Siヘテロ接合ダイオードの伝導機構に及ぼすa‐SiGe:H厚の影響 , 2005 .

[5]  Ilkka Tittonen,et al.  High-quality crystallinity controlled ALD TiO2 for waveguiding applications. , 2013, Optics letters.

[6]  A. Kar,et al.  Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier. , 2010, Optics express.

[7]  Wei Zhang,et al.  A Unified Framework for Street-View Panorama Stitching , 2016, Sensors.

[8]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[9]  W Freude,et al.  Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition. , 2011, Optics express.

[10]  Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain , 2017 .

[11]  Markus Pollnau,et al.  Erbium‐doped integrated waveguide amplifiers and lasers , 2011 .

[12]  G. Dalapati,et al.  Electrical and Interfacial Characterization of Atomic Layer Deposited High- $\kappa$ Gate Dielectrics on GaAs for Advanced CMOS Devices , 2007, IEEE Transactions on Electron Devices.

[13]  Ari Tervonen,et al.  Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities , 2012 .

[14]  Seppo Honkanen,et al.  Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition , 2009 .

[15]  M Roussey,et al.  Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate. , 2015, Optics express.

[16]  Edward H. Bernhardi,et al.  Erbium-doped spiral amplifiers with 20 dB of net gain on silicon. , 2014, Optics express.

[17]  L. Vivien,et al.  Handbook of Silicon Photonics , 2013 .

[18]  S. Decoutere,et al.  CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN MISHEMT on Silicon , 2012, IEEE Electron Device Letters.

[19]  M. Erdmanis,et al.  ALD-Assisted Multiorder Dispersion Engineering of Nanophotonic Strip Waveguides , 2012, Journal of Lightwave Technology.

[20]  Pascale Mazoyer,et al.  Evolution of materials technology for stacked-capacitors in 65 nm embedded-DRAM , 2005 .

[21]  Dimitri Geskus,et al.  Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon , 2010 .

[22]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  Gunther Roelkens,et al.  Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides. , 2010, Optics express.

[24]  Florian Merget,et al.  Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. , 2013, Optics express.

[25]  G. Lo,et al.  Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition. , 2011, Optics express.

[26]  Robert A Norwood,et al.  Enhancement of the third-order optical nonlinearity in ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition , 2013 .

[27]  M Kuittinen,et al.  Angled sidewalls in silicon slot waveguides: conformal filling and mode properties. , 2009, Optics express.

[28]  Purnawirman,et al.  C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities. , 2013, Optics letters.

[29]  Ana M. Sánchez,et al.  Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications , 2017, Sensors.

[30]  Zhou Fang,et al.  A review of recent progress in lasers on silicon , 2013 .

[31]  Zhan Su,et al.  Monolithic erbium- and ytterbium-doped microring lasers on silicon chips. , 2014, Optics express.

[32]  M. Lipson,et al.  First-principle derivation of gain in high-index-contrast waveguides. , 2008, Optics express.

[33]  S. Venkatesh,et al.  A compact high-performance optical waveguide amplifier , 2004, IEEE Photonics Technology Letters.

[34]  Albert Polman,et al.  Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm , 1997 .

[35]  Markus Pollnau,et al.  Amplification in epitaxially grown $Er:(Gd, Lu)_2O_3$ waveguides for active integrated optical devices , 2008 .

[36]  Nasser Peyghambarian,et al.  Atomic Layer Engineering of Er-Ion Distribution in Highly Doped Er:Al2O3 for Photoluminescence Enhancement , 2016 .

[37]  P. K. Basu,et al.  Silicon Photonics: Fundamentals and Devices , 2012 .

[38]  Xue Feng,et al.  Giant optical gain in a single-crystal erbium chloride silicate nanowire , 2017, Nature Photonics.