Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques

[1]  Panagiotis G. Asteris,et al.  Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models , 2020 .

[2]  Tien-Thinh Le,et al.  Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model , 2020 .

[3]  Panagiotis G. Asteris,et al.  A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm , 2020, Engineering with Computers.

[4]  Tien-Thinh Le Practical machine learning-based prediction model for axial capacity of square CFST columns , 2020, Mechanics of Advanced Materials and Structures.

[5]  Liborio Cavaleri,et al.  Mapping and holistic design of natural hydraulic lime mortars , 2020 .

[6]  Tien-Thinh Le Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method , 2020, Journal of Composite Materials.

[7]  Panagiotis G. Asteris,et al.  A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength , 2020, Neural Computing and Applications.

[8]  Tien-Thinh Le,et al.  A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns , 2020, Molecules.

[9]  P. G. Asteris,et al.  Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models , 2020, Neural Computing and Applications.

[10]  Liborio Cavaleri,et al.  On the metaheuristic models for the prediction of cement-metakaolin mortars compressive strength , 2020 .

[11]  Tien-Thinh Le Surrogate Neural Network Model for Prediction of Load-Bearing Capacity of CFSS Members Considering Loading Eccentricity , 2020, Applied Sciences.

[12]  Hung Nguyen-Xuan,et al.  Balancing composite motion optimization , 2020, Inf. Sci..

[13]  Nadhir Al-Ansari,et al.  Extreme Learning Machine Based Prediction of Soil Shear Strength: A Sensitivity Analysis Using Monte Carlo Simulations and Feature Backward Elimination , 2020, Sustainability.

[14]  Binh Thai Pham,et al.  Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression , 2020, Materials.

[15]  Panagiotis G. Asteris,et al.  Concrete compressive strength using artificial neural networks , 2019, Neural Computing and Applications.

[16]  Duc-Kien Thai,et al.  Application of ANN in predicting ACC of SCFST column , 2019, Composite Structures.

[17]  Chris G. Karayannis,et al.  Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks , 2019 .

[18]  Panagiotis G. Asteris,et al.  Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures , 2019, Neural Computing and Applications.

[19]  318-19 Building Code Requirements for Structural Concrete and Commentary , 2019 .

[20]  Hui Chen,et al.  Assessing Dynamic Conditions of the Retaining Wall: Developing Two Hybrid Intelligent Models , 2019, Applied Sciences.

[21]  Panagiotis G. Asteris,et al.  Soft computing-based techniques for concrete beams shear strength , 2019, Procedia Structural Integrity.

[22]  P. G. Asteris,et al.  Compressive strength of natural hydraulic lime mortars using soft computing techniques , 2019, Procedia Structural Integrity.

[23]  M. Esfahani,et al.  PREDICTION OF BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE COMPOSITE BEAM-COLUMNS BY ARTIFICIAL NEURAL NETWORK , 2018 .

[24]  Liang-Jiu Jia,et al.  Structural behavior of UHPC filled steel tube columns under axial loading , 2018, Thin-Walled Structures.

[25]  T. Chan,et al.  Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression , 2018, Journal of Constructional Steel Research.

[26]  Ana Piquer,et al.  Shape effect on axially loaded high strength CFST stub columns , 2018, Journal of Constructional Steel Research.

[27]  K. Zhoua,et al.  Concrete-encased CFST structures : behaviour and application , 2018 .

[28]  Panagiotis G. Asteris,et al.  Surface treatment of tool steels against galling failure , 2018 .

[29]  Brian Uy,et al.  Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections , 2017 .

[30]  Hong-ping Zhu,et al.  Experimental study of concrete filled cold-formed steel tubular stub columns , 2017 .

[31]  Xiaochun Cao,et al.  Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks , 2017, Frontiers of Computer Science.

[32]  Liborio Cavaleri,et al.  Modeling of surface roughness in electro-discharge machining using artificial neural networks , 2017 .

[33]  Panagiotis G. Asteris,et al.  Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials , 2017, Sensors.

[34]  J. Y. Richard Liew,et al.  Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials , 2017 .

[35]  Brian Uy,et al.  Strength, stiffness and ductility of concrete-filled steel columns under axial compression , 2017 .

[36]  Brian Uy,et al.  Concentrically loaded slender square hollow and composite columns incorporating high strength properties , 2017 .

[37]  Zhihua Chen,et al.  Behavior of rectangular concrete-filled high-strength steel tubular columns with different aspect ratio , 2016 .

[38]  M. Dundu,et al.  Column buckling tests of hot-rolled concrete filled square hollow sections of mild to high strength steel , 2016 .

[39]  J. Y. Richard Liew,et al.  Design of Concrete Filled Tubular Beam-columns with High Strength Steel and Concrete , 2016 .

[40]  Zhihua Chen,et al.  Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel , 2016 .

[41]  Manoj Khandelwal,et al.  A new model based on gene expression programming to estimate air flow in a single rock joint , 2016, Environmental Earth Sciences.

[42]  Aminaton Marto,et al.  Neuro-fuzzy technique to predict air-overpressure induced by blasting , 2015, Arabian Journal of Geosciences.

[43]  Brian Uy,et al.  Behaviour and design of composite columns incorporating compact high-strength steel plates , 2015 .

[44]  S. Jayalekshmi,et al.  Application of Artificial Neural Network for Calculation of Axial Capacity of Circular Concrete Filled Steel Tubular Columns , 2015 .

[45]  Danial Jahed Armaghani,et al.  Application of artificial neural network for predicting shaft and tip resistances of concrete piles , 2015 .

[46]  Lin-Hai Han,et al.  Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members , 2014 .

[47]  Faris Ali,et al.  Artificial Neural Networks for the Spalling Classification & Failure Prediction Times of High Strength Concrete Columns , 2014 .

[48]  Fa-xing Ding,et al.  Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading , 2014 .

[49]  Ahmet Tuncan,et al.  Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression , 2014 .

[50]  Jianqiao Ye,et al.  A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression , 2013 .

[51]  Antanas Šapalas,et al.  Neural network prediction of buckling load of steel arch-shells , 2012 .

[52]  Rajandrea Sethi,et al.  Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon , 2012, Eng. Appl. Artif. Intell..

[53]  A. Gandomi,et al.  Energy-based numerical models for assessment of soil liquefaction , 2012 .

[54]  Hua Wei,et al.  Seismic Behavior of Concrete Filled Circular Steel Tubular Columns Based on Artificial Neural Network , 2012 .

[55]  Yun Feng Xiao,et al.  Approach of Concrete-Filled Steel Tube Ultrasonic Method Based on Ann , 2011 .

[56]  Brian Uy,et al.  Behaviour of short and slender concrete-filled stainless steel tubular columns , 2011 .

[57]  Wei-liang Jin,et al.  Experimental investigation of thin-walled complex section concrete-filled steel stub columns , 2010 .

[58]  Satyabodh M. Kulkarni,et al.  Axial capacity of rectangular concrete-filled steel tube columns – DOE approach , 2010 .

[59]  Brian Uy,et al.  Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression , 2009 .

[60]  Shanhe Wu,et al.  Various Proofs of the Cauchy-Schwarz Inequality , 2009 .

[61]  Lin-Hai Han,et al.  Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete , 2008 .

[62]  Zhong Tao,et al.  Experimental behaviour of high performance concrete-filled steel tubular columns , 2008 .

[63]  Tsong Yen,et al.  Experimental study on rectangular CFT columns with high-strength concrete , 2007 .

[64]  Ben Young,et al.  Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns , 2006 .

[65]  Guo Lan-hui Elastic and elastic-plastic buckling behavior of SHS steel tube filled with concrete , 2006 .

[66]  Lin-Hai Han,et al.  Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC) , 2005 .

[67]  Dalin Liu,et al.  Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns , 2005 .

[68]  Dalin Liu,et al.  Tests on high-strength rectangular concrete-filled steel hollow section stub columns , 2005 .

[69]  Lin-Hai Han,et al.  Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns , 2005 .

[70]  Manolis I. A. Lourakis A Brief Description of the Levenberg-Marquardt Algorithm Implemented by levmar , 2005 .

[71]  Lin-Hai Han,et al.  Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC) , 2004 .

[72]  Murat Dicleli,et al.  Predicting the shear strength of reinforced concrete beams using artificial neural networks , 2004 .

[73]  Dennis Lam,et al.  Experimental study on concrete filled square hollow sections , 2004 .

[74]  Shehdeh Ghannam,et al.  Failure of lightweight aggregate concrete-filled steel tubular columns , 2004 .

[75]  Hiroyuki Nakahara,et al.  Behavior of centrally loaded concrete-filled steel-tube short columns , 2004 .

[76]  Lin-Hai Han,et al.  Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes , 2003 .

[77]  Jie Yuan,et al.  Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns , 2003 .

[78]  Lin-Hai Han,et al.  Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads , 2003 .

[79]  Lin-Hai Han,et al.  Influence of concrete compaction on the strength of concrete-filled steel RHS columns , 2003 .

[80]  Brian Uy,et al.  Strength of concrete filled steel box columns incorporating interaction buckling , 2003 .

[81]  Yong Wang,et al.  Prediction of fire resistance of concrete filled tubular steel columns using neural networks , 2002 .

[82]  Richard Sause,et al.  Experimental Behavior of High Strength Square Concrete-Filled Steel Tube Beam-Columns , 2002 .

[83]  Lin-Hai Han,et al.  Tests on Stub Columns of Concrete-filled RHS Sections , 2002 .

[84]  Brian Uy,et al.  Behaviour and Design of Steel Square Hollow Sections Filled With High Strength Concrete , 2002 .

[85]  Keigo Tsuda,et al.  Simplified design formula of slender concrete filled steel tubular beam-columns , 2001 .

[86]  Brian Uy,et al.  Strength of short concrete filled high strength steel box columns , 2001 .

[87]  Jun Kawaguchi,et al.  Experimental Study of Scale Effects on the Compressive Behavior of Short Concrete-Filled Steel Tube Columns , 2002 .

[88]  Brian Uy,et al.  Strength of concrete filled steel box columns incorporating local buckling , 2000 .

[89]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[90]  Keigo TSUDA,et al.  STRENGTH AND BEHAVIOR OF SLENDER CONCRETE FILLED STEEL TUBULAR COLUMNS , 1999 .

[91]  Stephen P. Schneider,et al.  Axially Loaded Concrete-Filled Steel Tubes , 1998 .

[92]  Brian Uy,et al.  Local and post-local buckling of concrete filled steel welded box columns , 1998 .

[93]  D. J. Laurie Kennedy,et al.  THE FLEXURAL BEHAVIOUR OF CONCRETE-FILLED HOLLOW STRUCTURAL SECTIONS , 1994 .

[94]  K. F. Chung,et al.  Composite column design to Eurocode 4 : based on DD ENV 1994-1-1: 1994 Eurocode 4: design of composite steel and concrete structures: part 1.1: general rules and rules for buildings , 1994 .

[95]  Marianne Grauers,et al.  Composite Columns of Hollow Steel Sections Filled with High Strength Concrete , 1993 .

[96]  K. Cederwall,et al.  High-Strength Concrete Used in Composite Columns , 1990, SP-121: High-Strength Concrete: Second International Symposium.

[97]  Kenji Sakino,et al.  EXPERIMENTAL STUDIES ON THE ULTIMATE MOMENT OF CONCRETE FILLED SQUARE STEEL TUBULAR BEAM-COLUMNS , 1979 .

[98]  Masahide Tomii,et al.  Experimental Studies on Concrete-Filled Steel Tubular Stub Columns under Concentric Loading , 1977 .

[99]  Robert Park,et al.  Strength of Concrete Filled Steel Tubular Columns , 1969 .

[100]  Richard W. Furlong,et al.  Strength of Steel-Encased Concrete Beam Columns , 1967 .

[101]  N. J. Gardner,et al.  Structural Behavior of Concrete Filled Steel Tubes , 1967 .