Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics
暂无分享,去创建一个
Guillaume Houzeaux | José María Cela | Vladimir Puzyrev | Josep de la Puente | Jelena Koldan | J. Cela | G. Houzeaux | V. Puzyrev | Jelena Koldan | J. Puente
[1] Gregory A. Newman,et al. Electromagnetic induction in a generalized 3D anisotropic earth, Part 2: The LIN preconditioner , 2003 .
[2] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[3] R.D. Falgout,et al. An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.
[4] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[5] Dan Li,et al. Parallel numerical solution of the time-harmonic Maxwell equations in mixed form , 2012, Numer. Linear Algebra Appl..
[6] William L. Briggs,et al. A multigrid tutorial , 1987 .
[7] Max A. Meju,et al. Useful characteristics of shallow and deep marine CSEM responses inferred from 3D finite-difference modeling , 2009 .
[8] Mark E. Everett,et al. Theoretical Developments in Electromagnetic Induction Geophysics with Selected Applications in the Near Surface , 2011, Surveys in Geophysics.
[9] J. Dendy. Black box multigrid , 1982 .
[10] Michael Commer,et al. A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources , 2004 .
[11] Rainald Löhner,et al. A parallel implicit incompressible flow solver using unstructured meshes , 1993 .
[12] Elizabeth R. Jessup,et al. A Technique for Accelerating the Convergence of Restarted GMRES , 2005, SIAM J. Matrix Anal. Appl..
[13] Uri M. Ascher,et al. Multigrid Preconditioning for Krylov Methods for Time-Harmonic Maxwell's Equations in Three Dimensions , 2002, SIAM J. Sci. Comput..
[14] Guillaume Houzeaux,et al. A massively parallel fractional step solver for incompressible flows , 2009, J. Comput. Phys..
[15] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[16] Gregory A. Newman,et al. Three-dimensional induction logging problems, Part 2: A finite-difference solution , 2002 .
[17] W. A. Mulder,et al. A multigrid solver for 3D electromagnetic diffusion , 2006 .
[18] Algebraic MultiGrid Methods for Nodal and Edge based Discretizations of Maxwell ’ s Equations , 2002 .
[19] Chester J. Weiss,et al. Mapping thin resistors and hydrocarbons with marine EM methods, Part II -Modeling and analysis in 3D , 2006 .
[20] Guillaume Houzeaux,et al. A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling , 2013 .
[21] Dmitry B. Avdeev,et al. Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .
[22] Guillaume Houzeaux,et al. Parallel uniform mesh multiplication applied to a Navier–Stokes solver , 2013 .
[23] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[24] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[25] David S. Burnett,et al. Finite Element Analysis: From Concepts to Applications , 1987 .
[26] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[27] Oszkar Biro,et al. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials , 2001 .
[28] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[29] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[30] Christoph Schwarzbach,et al. Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example , 2011 .
[31] Francisco Ortigosa,et al. A parallel finite‐element method for 3‐D marine controlled‐source electromagnetic forward modeling , 2011 .
[32] René-Édouard Plessix,et al. An approach for 3D multisource, multifrequency CSEM modeling , 2007 .
[33] François Baumgartner,et al. CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and electromagnetic surveys , 2006, Comput. Geosci..
[34] J. David Moulton,et al. Robust and adaptive multigrid methods: comparing structured and algebraic approaches , 2012, Numer. Linear Algebra Appl..
[35] Chester J. Weiss,et al. Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling , 2006 .
[36] V. E. Henson,et al. BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .
[37] G. Newman,et al. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .