Lithological mapping of East Tianshan area using integrated data fused by Chinese GF-1 PAN and ASTER multi-spectral data

Abstract The East Tianshan Mountain is one of the most important gold ore forming zones in northwestern China and central Asia. The Chinese GaoFen-1 (GF-1), the first Chinese high resolution satellite, is characterized by its 2-m resolution PAN data. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the well-known earth observation satellite, is advanced by its finer spectral resolution owing 9 bands in the visible and near infrared (VNIR) to the short-wave infrared (SWIR) region. In this study, we fused the GF-1 PAN and the ASTER multispectral data using the well-known Gram-Schmidt Pan Sharpening (G-S) method to produce a new data with both high spatial and spectral resolution. Then different lithological units were mapped respectively using the fusion data, the ASTER data and the WorldView-3 data by support vector machine (SVM) method. In order to assess this fusion data, a comparison work was executed among the three mapping results. The comparison work indicated that lithological classification using the new fusion data is an efficient, robust and low cost method, and it could replace the WV-3 data in some large sale geological work.

[1]  A. B. Lefkoff,et al.  Expert system-based mineral mapping in northern death valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1993 .

[2]  James K. Crowley,et al.  Mapping playa evaporite minerals with AVIRIS data: a first report from Death Valley, California , 1993 .

[3]  W. Bakker,et al.  Cross correlogram spectral matching : application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada , 1997 .

[4]  Cao Guo-bin The geochemistry characteristics and prediction in Beishan area of Xinjiang , 2001 .

[5]  Hugh G. Lewis,et al.  A generalized confusion matrix for assessing area estimates from remotely sensed data , 2001 .

[6]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[7]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[8]  Richard G. Derwent,et al.  Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere , 2003 .

[9]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  R. S. Chatterjee,et al.  Fusion of surface relief data with high spectral and spatial resolution satellite remote sensor data for deciphering geological information in a mature topographic terrain , 2003 .

[11]  M. Ramsey,et al.  Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing , 2004 .

[12]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[13]  JingwenMao,et al.  Late Paleozoic base and precious metal deposits,East Tianshan, Xinjiang, China: Characteristics and geodynamic setting , 2005 .

[14]  C. Hart,et al.  Late Paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: Characteristics and geodynamic setting , 2005 .

[15]  M. Zasada,et al.  Applying geostatistics for investigations of forest ecosystems using remote sensing imagery , 2005 .

[16]  T. J. Majumdar,et al.  ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation , 2007 .

[17]  Xianfeng Zhang,et al.  Comparison of lithologic mapping with ASTER, hyperion, and ETM data in the southeastern Chocolate Mountains, USA , 2007 .

[18]  M. H. Tangestani,et al.  Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran , 2008 .

[19]  N. Saadi,et al.  Assessing image processing techniques for geological mapping: a case study in Eljufra, Libya , 2009 .

[20]  C. K. Singh,et al.  Spatial-Temporal Monitoring of Groundwater Using Multivariate Statistical Techniques in Bareilly District of Uttar Pradesh, India , 2009 .

[21]  Hina Pande,et al.  Analyzing hyper-spectral and multi-spectral data fusion in spectral domain , 2009 .

[22]  Na Li Textural and Rule-based Lithological Classification of Remote Sensing Data, and Geological Mapping in Southwestern Prieska Sub-basin, Transvaal Supergroup, South Africa , 2010 .

[23]  Magaly Koch,et al.  Applying imaging spectroscopy techniques to map saline soils with ASTER images , 2010 .

[24]  Jonathan Naden,et al.  Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain , 2011 .

[25]  Shuhab D. Khan,et al.  Lithological mapping of Bela ophiolite with remote-sensing data , 2011 .

[26]  Mazlan Hashim,et al.  Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran , 2011 .

[27]  Le Yu,et al.  Towards automatic lithological classification from remote sensing data using support vector machines , 2010, Comput. Geosci..

[28]  Mazlan Hashim,et al.  Identifying areas of high economic-potential copper mineralization using aster data in the urumieh-dokhtar volcanic belt, Iran , 2012 .

[29]  A. Arar,et al.  A “simple” geomatics-based approach for assessing water erosion hazard at montane areas , 2012, Arabian Journal of Geosciences.

[30]  Thomas Maurer HOW TO PAN-SHARPEN IMAGES USING THE GRAM-SCHMIDT PAN-SHARPEN METHOD – A RECIPE , 2013 .

[31]  Prashant K. Srivastava,et al.  Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine , 2014, Environmental Earth Sciences.

[32]  Parviz Moarefvand,et al.  Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi 1:100,000 mapping sheet of Central Iran , 2013 .

[33]  Fred A. Kruse,et al.  Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared Imagery , 2013, Remote. Sens..

[34]  Mazlan Hashim,et al.  Detection of chromite bearing mineralized zones in Abdasht ophiolite complex using ASTER and ETM+ remote sensing data , 2013, Arabian Journal of Geosciences.

[35]  Derek M. Rogge,et al.  Mapping of NiCu–PGE ore hosting ultramafic rocks using airborne and simulated EnMAP hyperspectral imagery, Nunavik, Canada , 2014 .

[36]  D. Roberts,et al.  Urban tree species mapping using hyperspectral and lidar data fusion , 2014 .

[37]  T. M. Ramadan,et al.  Mapping of the late Neoproterozoic Basement rocks and detection of the gold-bearing alteration zones at Abu Marawat-Semna area, Eastern Desert, Egypt using remote sensing data , 2015, Arabian Journal of Geosciences.

[38]  Xiaoling Chen,et al.  Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: Radiometric and spatial considerations , 2015 .

[39]  Li Wang,et al.  Potential of multitemporal Gaofen-1 panchromatic/multispectral images for crop classification: case study in Xinjiang Uygur Autonomous Region, China , 2015 .

[40]  Fred A. Kruse,et al.  Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping , 2015 .

[41]  Emmanuel John M. Carranza,et al.  Application of Discriminant Analysis and Support Vector Machine in Mapping Gold Potential Areas for Further Drilling in the Sari-Gunay Gold Deposit, NW Iran , 2016, Natural Resources Research.

[42]  M. Hashim,et al.  Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: a case study from Central Belt, Peninsular Malaysia , 2015 .

[43]  T. Sonnenborg,et al.  Nitrate vulnerability assessment of aquifers , 2016, Environmental Earth Sciences.

[44]  Aradhana Yaduvanshi,et al.  Support vector machines and generalized linear models for quantifying soil dehydrogenase activity in agro-forestry system of mid altitude central Himalaya , 2016, Environmental Earth Sciences.

[45]  Abderrazak El Harti,et al.  Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas , 2016 .

[46]  Frédéric Baret,et al.  Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data , 2016 .

[47]  K. Karantzalos,et al.  Pansharpening on the Narrow Vnir and SWIR Spectral Bands of SENTINEL-2 , 2016 .

[48]  Ling Zhang,et al.  Comparison and evaluation on image fusion methods for GaoFen-1 imagery , 2016, Other Conferences.

[49]  Lei Liu,et al.  Mineral resources prospecting by synthetic application of TM/ETM+, Quickbird and Hyperion data in the Hatu area, West Junggar, Xinjiang, China , 2016, Scientific Reports.

[50]  Wang Shouzhi,et al.  Extraction of Iron Stained Alteration Information based on Landsat\|8 OLI and GF-1 PMS Data , 2016 .

[51]  Bei Ye,et al.  Assessment of WorldView-3 Data for Lithological Mapping , 2017, Remote. Sens..

[52]  Bin Zou,et al.  Satellite Based Mapping of Ground PM2.5 Concentration Using Generalized Additive Modeling , 2016, Remote. Sens..

[53]  Ling Han,et al.  Mineral mapping and ore prospecting using Landsat TM and Hyperion data, Wushitala, Xinjiang, northwestern China , 2017 .

[54]  Palanisamy Arulbalaji,et al.  Lithological mapping of Kanjamalai hill using hyperspectral remote sensing tools in Salem district, Tamil Nadu, India , 2017 .

[55]  Xinliang Xu,et al.  Mineral mapping using spaceborne Tiangong‐1 hyperspectral imagery and ASTER data: A case study of alteration detection in support of regional geological survey at Jintanzi‐Malianquan area, Beishan, Gansu Province, China , 2018, Geological Journal.

[56]  Lauren N. Schaefer,et al.  Integrating airborne hyperspectral imagery and LiDAR for volcano mapping and monitoring through image classification , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[57]  Lei Liu,et al.  Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[58]  P. Srivastava,et al.  Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS® , 2018 .

[59]  Prosper Basommi Laari,et al.  Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India , 2018 .

[60]  Sudhir Kumar Singh,et al.  Extracting water-related features using reflectance data and principal component analysis of Landsat images , 2018 .

[61]  Derek M. Rogge,et al.  Comparison of lithological mapping results from airborne hyperspectral VNIR-SWIR, LWIR and combined data , 2018, Int. J. Appl. Earth Obs. Geoinformation.