Linear coupled component automata for MILP modeling of hybrid systems

Abstract We first introduce a novel modeling framework, called linear coupled component automata (LCCA), to facilitate the modeling of discrete-continuous dynamical systems with piecewise constant derivatives. Second, we provide a procedure for transforming models in this framework to mixed-integer linear programming (MILP) constraints. Traditionally, such systems have been modeled directly with MILP constraints. We show with an example that our framework significantly simplifies model formulation and allows the complex MILP constraints to be produced systematically.

[1]  Paul I. Barton,et al.  Global optimization of linear hybrid systems with explicit transitions , 2004, Syst. Control. Lett..

[2]  Oded Maler,et al.  Job-Shop Scheduling Using Timed Automata , 2001, CAV.

[3]  B. Schutter,et al.  On the equivalence of classes of hybrid dynamical models , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[4]  Nilay Shah,et al.  Modelling and optimisation of general hybrid systems in the continuous time domain , 1998 .

[5]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[6]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[7]  John Lygeros,et al.  Synthesizing Controllers for Nonlinear Hybrid Systems , 1998, HSCC.

[8]  B. Krogh,et al.  Synthesis of supervisory controllers for hybrid systems based on approximating automata , 1998, IEEE Trans. Autom. Control..

[9]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[10]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[11]  Heinz A. Preisig,et al.  Concept and design of Modeller, a computer-aided modelling tool , 1999 .

[12]  Oded Maler,et al.  Preemptive Job-Shop Scheduling Using Stopwatch Automata , 2002, TACAS.

[13]  Olaf Stursberg,et al.  Generation of Optimal Control Policies for Systems with Switched Hybrid Dynamics , 2002 .

[14]  Kim G. Larsen,et al.  The Impressive Power of Stopwatches , 2000, CONCUR.

[15]  T. Henzinger The theory of hybrid automata , 1996, LICS 1996.

[16]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[17]  Eugene Asarin,et al.  Optimal control for timed automata 1 , 1999 .

[18]  Josef Kallrath,et al.  Mixed Integer Optimization in the Chemical Process Industry: Experience, Potential and Future Perspectives , 2000 .

[19]  Wolfgang Marquardt,et al.  Disjunctive modeling for optimal control of hybrid systems , 2008, Comput. Chem. Eng..

[20]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[21]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[22]  Ignacio E. Grossmann,et al.  Logical modeling frameworks for the optimization of discrete-continuous systems , 2006 .

[23]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[24]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[25]  Joseph Sifakis,et al.  An Approach to the Description and Analysis of Hybrid Systems , 1992, Hybrid Systems.

[26]  Paul I. Barton,et al.  Modeling of combined discrete/continuous processes , 1994 .

[27]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .