Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective

We study discontinuous Galerkin approximations of the p-biharmonic equation for p 2 (1;1) from a variational perspective. We propose a discrete variation al formulation of the problem based on an appropriate definition of a finite element Hessian and study convergence of the method (without rates) using a semicontinuity argument. We also present numerical experiments aimed at testing the robustness of the method.

[1]  Alexandre Ern,et al.  Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian , 2008 .

[2]  Alan C. Lazer,et al.  Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis , 1990, SIAM Rev..

[3]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[4]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[5]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[6]  T. Gyulov,et al.  On a class of boundary value problems involving the p-biharmonic operator , 2010 .

[7]  Andreas Dedner,et al.  DISCONTINUOUS GALERKIN METHODS FOR NONVARIATIONAL PROBLEMS , 2013, 1304.2265.

[8]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[9]  Omar Lakkis,et al.  A Finite Element Method for Second Order Nonvariational Elliptic Problems , 2010, SIAM J. Sci. Comput..

[10]  Igor Mozolevski,et al.  hp-version interior penalty DGFEMs for the biharmonic equation , 2007 .

[11]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[12]  Pedro Morin,et al.  On Convex Functions and the Finite Element Method , 2008, SIAM J. Numer. Anal..

[13]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[14]  Paul Houston,et al.  Discontinuous Galerkin methods for the biharmonic problem , 2009 .

[15]  Thirupathi Gudi,et al.  Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2008, J. Sci. Comput..

[16]  Emmy Noether,et al.  Invariant Variation Problems , 2005, physics/0503066.

[17]  A nonvariational finite element method for fully nonlinear elliptic problems , 2011 .

[18]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  John W. Barrett,et al.  Finite element approximation of the parabolic p -Laplacian , 1994 .

[21]  Endre Süli,et al.  Poincaré-type inequalities for broken Sobolev spaces , 2003 .

[22]  A. Buffa,et al.  Compact embeddings of broken Sobolev spaces and applications , 2009 .

[23]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[24]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[25]  Weimin Han,et al.  A new C0 discontinuous Galerkin method for Kirchhoff plates , 2010 .