Mapping Circumstellar Matter with Polarized Light: The Case of Supernova 2014J in M82

Optical polarimetry is an effective way of probing the environment of a supernova for dust. We acquired linear HST ACS/WFC polarimetry in bands , , and of the supernova (SN) 2014J in M82 at six epochs from ∼277 days to ∼1181 days after the B-band maximum. The polarization measured at day 277 shows conspicuous deviations from other epochs. These differences can be attributed to at least ∼ of circumstellar dust located at a distance of from the SN. The scattering dust grains revealed by these observations seem to be aligned with the dust in the interstellar medium that is responsible for the large reddening toward the supernova. The presence of this circumstellar dust sets strong constraints on the progenitor system that led to the explosion of SN 2014J; however, it cannot discriminate between single- and double-degenerate models.

[1]  W. E. Kerzendorf,et al.  A search for a surviving companion in SN 1006 , 2017, 1709.06566.

[2]  R. Siebenmorgen,et al.  Large Interstellar Polarisation Survey II. UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM , 2017, 1711.08672.

[3]  A. Goobar,et al.  Estimating dust distances to Type Ia supernovae from colour excess time evolution , 2017, 1707.00696.

[4]  P. Brown,et al.  Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor , 2017, Proceedings of the International Astronomical Union.

[5]  P. Lundqvist,et al.  Constraining Magnetic Field Amplification in SN Shocks Using Radio Observations of SNe 2011fe and 2014J , 2017, 1705.04204.

[6]  P. Brown,et al.  Late-time Flattening of Type Ia Supernova Light Curves: Constraints from SN 2014J in M82 , 2017, 1704.01431.

[7]  R. Botet,et al.  The effect of porosity of dust particles on polarization and color with special reference to comets , 2016, 1610.00848.

[8]  Thiem C. Hoang Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves , 2015, The Astrophysical Journal.

[9]  M. Kasliwal,et al.  Spitzer observations of SN 2014J and properties of mid-IR emission in Type Ia Supernovae , 2014, 1411.3332.

[10]  J. Peek,et al.  Mapping the Extinction Curve in 3D: Structure on Kiloparsec Scales , 2016, 1612.02818.

[11]  William B. Sparks,et al.  INTERSTELLAR-MEDIUM MAPPING IN M82 THROUGH LIGHT ECHOES AROUND SUPERNOVA 2014J , 2016, 1610.02458.

[12]  L. Mattsson Modelling dust processing and the evolution of grain sizes in the ISM using the method of moments , 2016, 1606.02272.

[13]  Paul S. Smith,et al.  ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY , 2016, 1605.03994.

[14]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[15]  M. Stritzinger,et al.  POST-MAXIMUM NEAR-INFRARED SPECTRA OF SN 2014J: A SEARCH FOR INTERACTION SIGNATURES , 2016, 1603.07331.

[16]  A. Cikota,et al.  DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO RV , 2016, 1601.05659.

[17]  J. Ninan,et al.  Optical and NIR observations of the nearby type Ia supernova SN 2014J , 2016, 1601.00805.

[18]  W. Hillebrandt,et al.  Type Ia supernovae from violent mergers of carbon-oxygen white dwarfs: polarization signatures , 2015, 1510.04128.

[19]  Warren R. Brown,et al.  SN 2012cg: EVIDENCE FOR INTERACTION BETWEEN A NORMAL SN Ia AND A NON-DEGENERATE BINARY COMPANION , 2015, 1507.07261.

[20]  A. Bonanos,et al.  Evidence for rapid variability in the optical light curve of the Type Ia SN 2014J , 2015, 1507.01011.

[21]  E. Rossi,et al.  Simulations of stripped core-collapse supernovae in close binaries , 2015, 1510.02483.

[22]  Armin Rest,et al.  No signature of ejecta interaction with a stellar companion in three type Ia supernovae , 2015, Nature.

[23]  N. Gehrels,et al.  A strong ultraviolet pulse from a newborn type Ia supernova , 2015, Nature.

[24]  Harry Lehto,et al.  Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years , 2015, Nature.

[25]  J. Sollerman,et al.  No trace of a single-degenerate companion in late spectra of supernovae 2011fe and 2014J , 2015, 1502.00589.

[26]  J. Pepper,et al.  CONSTRAINTS ON THE ORIGIN OF THE FIRST LIGHT FROM SN 2014J , 2015 .

[27]  T. Stephan,et al.  Cometary dust in Antarctic ice and snow: Past and present chondritic porous micrometeorites preserved on the Earth's surface , 2015 .

[28]  Arlin Crotts,et al.  LIGHT ECHOES FROM SUPERNOVA 2014J IN M82 , 2014, 1409.8671.

[29]  Kevin Krisciunas,et al.  SWIFT ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST , 2014, 1408.2381.

[30]  N. Soker,et al.  Modelling SNR G1.9+0.3 as a Supernova inside a Planetary Nebula , 2014, 1407.6231.

[31]  D. Baade,et al.  Properties of extragalactic dust inferred from linear polarimetry of Type Ia Supernovae , 2014, 1407.0136.

[32]  S. Plaszczynski,et al.  Polarization measurement analysis - I. Impact of the full covariance matrix on polarization fraction and angle measurements , 2014, 1406.6536.

[33]  B. J. Fulton,et al.  TIME-VARYING POTASSIUM IN HIGH-RESOLUTION SPECTRA OF THE TYPE IA SUPERNOVA 2014J , 2014, 1412.0653.

[34]  A.Goobar,et al.  Constraints on the origin of the first light from SN2014J , 2014, 1410.1363.

[35]  D. Bersier,et al.  The long-period Galactic Cepheid RS Puppis - III. A geometric distance from HST polarimetric imaging of its light echoes , 2014, 1408.1697.

[36]  R. Itoh,et al.  OPTICAL AND NEAR-INFRARED POLARIMETRY OF HIGHLY REDDENED Type Ia SUPERNOVA 2014J: PECULIAR PROPERTIES OF DUST IN M82 , 2014, 1407.0452.

[37]  Z. Paragi,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM AND THE ENVIRONS OF SN 2014J FROM DEEP RADIO OBSERVATIONS , 2014, 1405.4702.

[38]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[39]  R. Kirshner,et al.  NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS ENVIRONMENT , 2014, 1405.1488.

[40]  P. E. Nugent,et al.  THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE , 2014, 1404.2595.

[41]  Ori D. Fox,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM OF THE TYPE Ia SUPERNOVA 2014J FROM PRE-EXPLOSION HUBBLE SPACE TELESCOPE IMAGING , 2014, 1403.4250.

[42]  Wei Zheng,et al.  ESTIMATING THE FIRST-LIGHT TIME OF THE TYPE IA SUPERNOVA 2014J IN M82 , 2014, 1401.7968.

[43]  W. E. Kerzendorf,et al.  A RECONNAISSANCE OF THE POSSIBLE DONOR STARS TO THE KEPLER SUPERNOVA , 2013, The Astrophysical Journal.

[44]  N. Soker,et al.  Type Ia supernovae inside planetary nebulae: shaping by jets , 2013, 1305.1845.

[45]  D. Kasen,et al.  TIDAL TAIL EJECTION AS A SIGNATURE OF TYPE Ia SUPERNOVAE FROM WHITE DWARF MERGERS , 2013, 1304.4957.

[46]  Robert T. Fisher,et al.  THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS , 2013, 1302.5700.

[47]  R. Foley,et al.  CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE , 2013, 1302.2916.

[48]  J. Maund,et al.  Spectropolarimetry of the Type Ia supernova 2012fr , 2013, 1302.0166.

[49]  J. Wheeler,et al.  WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE , 2012, 1209.1021.

[50]  S. Gonzaga,et al.  The DrizzlePac Handbook , 2012 .

[51]  M. S. Prokopjeva,et al.  Interstellar polarization and grain alignment: the role of iron and silicon , 2012, 1203.3677.

[52]  Bradley E. Schaefer,et al.  An absence of ex-companion stars in the type Ia supernova remnant SNR 0509−67.5 , 2012, Nature.

[53]  Nathaniel R. Butler,et al.  Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.

[54]  Nathaniel R. Butler,et al.  A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.

[55]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[56]  A. Goobar,et al.  PERTURBATIONS OF SNe Ia LIGHT CURVES, COLORS, AND SPECTRAL FEATURES BY CIRCUMSTELLAR DUST , 2011, 1103.1960.

[57]  S. Taubenberger,et al.  Characterisation of the CAFOS linear spectropolarimeter , 2011, 1102.4447.

[58]  Enrico Ramirez-Ruiz,et al.  PRELUDE TO A DOUBLE DEGENERATE MERGER: THE ONSET OF MASS TRANSFER AND ITS IMPACT ON GRAVITATIONAL WAVES AND SURFACE DETONATIONS , 2011, 1101.5132.

[59]  B. Andersson,et al.  OBSERVATIONS OF ENHANCED RADIATIVE GRAIN ALIGNMENT NEAR HD 97300 , 2010 .

[60]  H. Kaneda,et al.  Large-scale distributions of mid- and far-infrared emission from the center to the halo of M 82 revealed with AKARI , 2010, 1002.4521.

[61]  Jacobs University Bremen,et al.  SURFACE DETONATIONS IN DOUBLE DEGENERATE BINARY SYSTEMS TRIGGERED BY ACCRETION STREAM INSTABILITIES , 2009, 0911.0416.

[62]  Daniel Kasen,et al.  SEEING THE COLLISION OF A SUPERNOVA WITH ITS COMPANION STAR , 2009, 0909.0275.

[63]  Ariel Goobar,et al.  Low RV from Circumstellar Dust around Supernovae , 2008, 0809.1094.

[64]  Lifan Wang,et al.  Spectropolarimetry of Supernovae , 2008, 0811.1054.

[65]  Yukiko Kamata,et al.  Wide-field one-shot optical polarimeter: HOWPol , 2008, Astronomical Telescopes + Instrumentation.

[66]  A. Goobar,et al.  The colour-lightcurve shape relation of type Ia supernovae and the reddening law , 2007, 0712.1155.

[67]  Australian National University,et al.  V838 MONOCEROTIS: A GEOMETRIC DISTANCE FROM HUBBLE SPACE TELESCOPE POLARIMETRIC IMAGING OF ITS LIGHT ECHO , 2007, The Astronomical Journal.

[68]  L. Girardi,et al.  THE ACS NEARBY GALAXY SURVEY TREASURY , 2007, 0905.3737.

[69]  P. Chandra,et al.  Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.

[70]  J. Hovenier,et al.  Experimental light scattering by fluffy aggregates of magnesiosilica, ferrosilica, and alumina cosmic dust analogs , 2007 .

[71]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[72]  M. Cracraft ACS Polarization Calibration – Data, Throughput, and Multidrizzle Weighting Schemes , 2007 .

[73]  W. M. Wood-Vasey,et al.  Novae as a Mechanism for Producing Cavities around the Progenitors of SN 2002ic and Other Type Ia Supernovae , 2006, astro-ph/0605635.

[74]  M. Köhler,et al.  Dust in the solar system and in extra-solar planetary systems , 2006 .

[75]  S. Benetti,et al.  Reflections on reflexions – II. Effects of light echoes on the luminosity and spectra of Type Ia supernovae , 2005, astro-ph/0512574.

[76]  Lifan Wang Dust around Type Ia Supernovae , 2005, astro-ph/0511003.

[77]  Astronomy,et al.  An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005, astro-ph/0503143.

[78]  F. Patat Reflections on reflexions — I. Light echoes in Type Ia supernovae , 2004, astro-ph/0409666.

[79]  S. Smartt,et al.  The binary progenitor of Tycho Brahe's 1572 supernova , 2004, Nature.

[80]  J. Walsh,et al.  ACS Polarization Calibration - I. Introduction and Status Report , 2004 .

[81]  Lifan Wang,et al.  On the Hydrogen Emission from the Type Ia Supernova SN 2002ic , 2003, astro-ph/0312508.

[82]  R. Tylenda On the light echo in V838 Mon , 2003, astro-ph/0306555.

[83]  B. Sugerman Observability of Scattered-Light Echoes around Variable Stars and Cataclysmic Events , 2003, astro-ph/0307245.

[84]  J. Biretta ACS Polarization Calibration , 2003 .

[85]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[86]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[87]  K. Jockers,et al.  Light Scattering by Aggregates with Sizes Comparable to the Wavelength: An Application to Cometary Dust , 2000 .

[88]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2005, astro-ph/0507614.

[89]  William B. Sparks,et al.  Panoramic Polarimetry Data Analysis , 1999 .

[90]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[91]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[92]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[93]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[94]  Lifan Wang,et al.  Polarization of SN 1987A Revisited , 1996, astro-ph/9602156.

[95]  W. Sparks A DIRECT WAY TO MEASURE THE DISTANCES OF GALAXIES , 1994 .

[96]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[97]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[98]  J. Truran,et al.  Type I Supernovae and Accretion-induced Collapses from Cataclysmic Variables? , 1992 .

[99]  Eli Livne,et al.  Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae , 1990 .

[100]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[101]  J. Mathis,et al.  Composite interstellar grains , 1989 .

[102]  R. Chevalier The scattered light echo of a supernova , 1986 .

[103]  J. Greenberg,et al.  Predicting that comet Halley is dark , 1986, Nature.

[104]  J. Truran,et al.  Recurrent novae as a consequence of the accretion of solar material onto a 1. 38 M/sub sun/ white dwarf , 1985 .

[105]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[106]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[107]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[108]  I. Iben Hot accreting white dwarfs in the quasi-static approximation , 1982 .

[109]  S. E. Persson,et al.  Infrared light curves of Type I supernovae , 1981, astro-ph/0211100.

[110]  G. Mie Contributions to the optics of turbid media, particularly of colloidal metal solutions , 1976 .

[111]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .

[112]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .

[113]  K. Serkowski Statistical Analysis of the Polarization and Reddening of the Double Cluster in Perseus , 1958 .

[114]  T. Gold The Alignment of Galactic Dust , 1952 .

[115]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[116]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .