Achieving the capacity of the N-relay Gaussian diamond network within logn bits

We consider the N-relay Gaussian diamond network where a source node communicates to a destination node via N parallel relays. We show that several strategies can achieve the capacity of this network within O(log N) bits independent of the channel configurations and the operating SNR. The first of these strategies is partial decode-and-forward: the source node broadcasts independent messages to the relays at appropriately chosen rates, which in turn decode and forward these messages to the destination over a MAC channel. The same performance can be also achieved by compress-and-forward, quantize-map-and-forward or noisy network coding if relays quantize their observations at a decreasing resolution with N, instead of quantizing at the noise-level. The best capacity approximations currently available for this network are within O(N) bits which follow from the corresponding capacity approximations for general Gaussian relay networks.

[1]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[2]  Christina Fragouli,et al.  Wireless Network Simplification: The Gaussian \(N\) -Relay Diamond Network , 2011, IEEE Transactions on Information Theory.

[3]  David Tse,et al.  Multiaccess Fading Channels-Part I: Polymatroid Structure, Optimal Resource Allocation and Throughput Capacities , 1998, IEEE Trans. Inf. Theory.

[4]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[5]  R. Gallager,et al.  The Gaussian parallel relay network , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[6]  Gerhard Kramer,et al.  On message lengths for noisy network coding , 2011, 2011 IEEE Information Theory Workshop.

[7]  Urs Niesen,et al.  Computation Alignment: Capacity Approximation Without Noise Accumulation , 2011, IEEE Transactions on Information Theory.

[8]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[9]  Xiugang Wu,et al.  A Unified Relay Framework With Both D-F and C-F Relay Nodes , 2014, IEEE Transactions on Information Theory.

[10]  Xiugang Wu,et al.  On the Optimal Compressions in the Compress-and-Forward Relay Schemes , 2010, IEEE Transactions on Information Theory.

[11]  Ayfer Özgür,et al.  Improved capacity approximations for Gaussian relay networks , 2013, 2013 IEEE Information Theory Workshop (ITW).

[12]  Suhas N. Diggavi,et al.  Approximately achieving Gaussian relay network capacity with lattice codes , 2010, 2010 IEEE International Symposium on Information Theory.

[13]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[14]  Suhas N. Diggavi,et al.  The Approximate Capacity of the Gaussian n-Relay Diamond Network , 2013, IEEE Transactions on Information Theory.

[15]  Pramod Viswanath,et al.  Compress-and-forward scheme for a relay network: Approximate optimality and connection to algebraic flows , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[16]  Feng Xue,et al.  Cooperation in a Half-Duplex Gaussian Diamond Relay Channel , 2007, IEEE Transactions on Information Theory.

[17]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[18]  Amir K. Khandani,et al.  A new achievable rate for the Gaussian parallel relay channel , 2009, 2009 IEEE International Symposium on Information Theory.

[19]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[20]  Christina Fragouli,et al.  Optimizing Quantize-Map-and-Forward relaying for Gaussian diamond networks , 2012, 2012 IEEE Information Theory Workshop.

[21]  Brett Schein,et al.  Distributed coordination in network information theory , 2001 .

[22]  Sreeram Kannan,et al.  Capacity of Multiple Unicast in Wireless Networks: A Polymatroidal Approach , 2011, IEEE Transactions on Information Theory.

[23]  Michael Gastpar,et al.  On the capacity of large Gaussian relay networks , 2005, IEEE Transactions on Information Theory.

[24]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[25]  Sung Hoon Lim,et al.  Distributed decode-forward for multicast , 2014, 2014 IEEE International Symposium on Information Theory.

[26]  R. Steele Optimization , 2005 .

[27]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[28]  Ayfer Özgür,et al.  Achieving the capacity of the N-relay Gaussian diamond network within logn bits , 2012, 2012 IEEE Information Theory Workshop.

[29]  Muriel Médard,et al.  A Theory of Network Equivalence— Part I: Point-to-Point Channels , 2011, IEEE Transactions on Information Theory.

[30]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[31]  Christina Fragouli,et al.  Simple schedules for half-duplex networks , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[32]  Suhas N. Diggavi,et al.  Wireless Network Information Flow: A Deterministic Approach , 2009, IEEE Transactions on Information Theory.

[33]  Andrea J. Goldsmith,et al.  Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels , 2003, IEEE Trans. Inf. Theory.

[34]  Abbas El Gamal,et al.  Capacity of a class of relay channels with orthogonal components , 2005, IEEE Transactions on Information Theory.

[35]  Sae-Young Chung,et al.  Noisy Network Coding , 2010, IEEE Transactions on Information Theory.

[36]  Yuval Kochman,et al.  Rematch and forward for parallel relay networks , 2008, 2008 IEEE International Symposium on Information Theory.