Bias correction of a novel European reanalysis data set for solar energy applications

[1]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[2]  B. McArthur,et al.  Baseline surface radiation network (BSRN/WCRP) New precision radiometry for climate research , 1998 .

[3]  Christoph Schillings,et al.  Long-term variability of solar direct and global radiation derived from ISCCP data and comparison with reanalysis data , 2006 .

[4]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[5]  C. Gueymard,et al.  Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling , 2009 .

[6]  Martin Greiner,et al.  Seasonal optimal mix of wind and solar power in a future, highly renewable Europe , 2010 .

[7]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[8]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[9]  Lucien Wald,et al.  The HelioClim Project: Surface Solar Irradiance Data for Climate Applications , 2011, Remote. Sens..

[10]  David Pozo-Vázquez,et al.  Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artifi , 2011 .

[11]  D. Lüthi,et al.  Intercomparison of aerosol climatologies for use in a regional climate model over Europe , 2011 .

[12]  Jörg Trentmann,et al.  Remote sensing of solar surface radiation for climate monitoring — the CM-SAF retrieval in international comparison , 2012 .

[13]  J. A. Ruiz-Arias,et al.  Analysis of Spatiotemporal Balancing between Wind and Solar Energy Resources in the Southern Iberian Peninsula , 2012 .

[14]  Jan Kleissl,et al.  Solar Energy Forecasting and Resource Assessment , 2013 .

[15]  Janet F. Barlow,et al.  Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland , 2013 .

[16]  Zhenghui Xie,et al.  Evaluation of satellite and reanalysis products of downward surface solar radiation over East Asia: Spatial and seasonal variations , 2013 .

[17]  Hazel E. Thornton,et al.  European wind variability over 140 yr , 2013, 1301.4032.

[18]  C. Frantzidis,et al.  Response to Reviewers Reviewer #1 , 2010 .

[19]  Fokko M. Mulder,et al.  Implications of diurnal and seasonal variations in renewable energy generation for large scale energy storage , 2014 .

[20]  Dirk J. Cannon,et al.  Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain , 2015 .

[21]  Jay Apt,et al.  What can reanalysis data tell us about wind power , 2015 .

[22]  Hilppa Gregow,et al.  Comparison of regional and global reanalysis near-surface winds with station observations over Germany , 2015 .

[23]  Susanne Crewell,et al.  Towards a high‐resolution regional reanalysis for the European CORDEX domain , 2015 .

[24]  Richard Müller,et al.  Digging the METEOSAT Treasure - 3 Decades of Solar Surface Radiation , 2015, Remote. Sens..

[25]  L. Wald,et al.  Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface , 2015 .

[26]  Martin Odening,et al.  A New Approach to Assess Wind Energy Potential , 2015 .

[27]  Hazel E. Thornton,et al.  The climatological relationships between wind and solar energy supply in Britain , 2015, 1505.07071.

[28]  F. Kaspar,et al.  Wind speed variability between 10 and 116 m height from the regional reanalysis COSMO-REA6 compared to wind mast measurements over Northern Germany and the Netherlands , 2016 .

[29]  S. Pfenninger,et al.  Using bias-corrected reanalysis to simulate current and future wind power output , 2016 .

[30]  Clemens Simmer,et al.  HErZ: The German Hans-Ertel Centre for Weather Research , 2016 .

[31]  S. Pfenninger,et al.  Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data , 2016 .

[32]  S. Pfenninger,et al.  Balancing Europe’s wind power output through spatial deployment informed by weather regimes , 2017, Nature climate change.

[33]  Susanne Crewell,et al.  A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation;A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation , 2017 .

[34]  Andreas Knaut,et al.  The benefit of long-term high resolution wind data for electricity system analysis , 2018 .