An Information Gap in DNA Evidence Interpretation

Forensic DNA evidence often contains mixtures of multiple contributors, or is present in low template amounts. The resulting data signals may appear to be relatively uninformative when interpreted using qualitative inclusion-based methods. However, these same data can yield greater identification information when interpreted by computer using quantitative data-modeling methods. This study applies both qualitative and quantitative interpretation methods to a well-characterized DNA mixture and dilution data set, and compares the inferred match information. The results show that qualitative interpretation loses identification power at low culprit DNA quantities (below 100 pg), but that quantitative methods produce useful information down into the 10 pg range. Thus there is a ten-fold information gap that separates the qualitative and quantitative DNA mixture interpretation approaches. With low quantities of culprit DNA (10 pg to 100 pg), computer-based quantitative interpretation provides greater match sensitivity.

[1]  M W Perlin,et al.  Linear mixture analysis: a mathematical approach to resolving mixed DNA samples. , 2001, Journal of forensic sciences.

[2]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[3]  J. Bohan,et al.  Review of: Strengthening Forensic Science in the United States: A Path Forward , 2010 .

[4]  Catherine M Cupples,et al.  STR Profiles from DNA Samples with “Undetected” or Low Quantifiler™ Results , 2009, Journal of forensic sciences.

[5]  A. Dawid,et al.  Probabilistic expert systems for DNA mixture profiling. , 2003, Theoretical population biology.

[6]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[7]  Mark W. Perlin,et al.  Simple Reporting of Complex DNA Evidence: Automated Computer Interpretation , 2003 .

[8]  J. Koehler,et al.  When Are People Persuaded By DNA Match Statistics? , 2001, Law and human behavior.

[9]  S. A. Sisson Genetics: Genetics and Stochastic Simulation Do Mix! , 2007 .

[10]  L. J. Savage,et al.  Probability and the weighing of evidence , 1951 .

[11]  Alfred Blumstein,et al.  Specialization and seriousness during adult criminal careers , 1988, Journal of Quantitative Criminology.

[12]  Joseph B. Kadane,et al.  Match Likelihood Ratio for Uncertain Genotypes , 2009 .

[13]  G. King,et al.  Variance Specification in Event Count Models: From Restrictive Assumptions to a Generalized Estimator , 1989 .

[14]  John M. Butler,et al.  Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers , 2001 .

[15]  Walter R. Gilks,et al.  Gibbs sampling methods in genetics , 1995 .

[16]  J A Lambert,et al.  A model for case assessment and interpretation. , 1998, Science & justice : journal of the Forensic Science Society.

[17]  Bruce Budowle,et al.  Mixture Interpretation: Defining the Relevant Features for Guidelines for the Assessment of Mixed DNA Profiles in Forensic Casework * , 2009, Journal of forensic sciences.

[18]  J Buckleton,et al.  An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. , 2000, Forensic science international.

[19]  F. Bieber,et al.  Interpretation of complex forensic DNA mixtures. , 2001, Croatian medical journal.

[20]  Byron Hall Bayesian Inference , 2011 .

[21]  J Buckleton,et al.  Interpreting simple STR mixtures using allele peak areas. , 1998, Forensic science international.

[22]  P. Gill,et al.  PENDULUM--a guideline-based approach to the interpretation of STR mixtures. , 2005, Forensic science international.

[23]  Law. Policy Executive Summary of the National Academies of Science Reports, Strengthening Forensic Science in the United States: A Path Forward , 2009 .

[24]  Ron C. Michaelis,et al.  A Litigator's Guide to DNA: From the Laboratory to the Courtroom , 2008 .

[25]  John Buckleton,et al.  Interpreting low template DNA profiles. , 2009, Forensic science international. Genetics.

[26]  William C. Thompson,et al.  Evaluating and Challenging Forensic Identification Evidence , 2006 .

[27]  C. Frégeau,et al.  DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. , 1993, BioTechniques.

[28]  L. Stein,et al.  Probability and the Weighing of Evidence , 1950 .

[29]  Franco Taroni,et al.  Statistics and the Evaluation of Evidence for Forensic Scientists , 2004 .

[30]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[31]  Mark W. Perlin Cybergenetics Scientific Validation of Mixture Interpretation Methods , 2006 .

[32]  G Stolovitzky,et al.  Efficiency of DNA replication in the polymerase chain reaction. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Tsewei Wang,et al.  Least‐Square Deconvolution: A Framework for Interpreting Short Tandem Repeat Mixtures * , 2006, Journal of forensic sciences.

[34]  Stephen P. Brooks,et al.  Review of Markov chain Monte Carlo in practice by WR Gilks, S Richardson & DJ Spiegelhalter , 1997 .

[35]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[36]  S L Lauritzen,et al.  Identification and separation of DNA mixtures using peak area information. , 2007, Forensic science international.

[37]  J A Lambert,et al.  Taking account of peak areas when interpreting mixed DNA profiles. , 1998, Journal of forensic sciences.

[38]  J. Buckleton,et al.  Forensic DNA Evidence Interpretation , 2004 .

[39]  Steffen L. Lauritzen,et al.  Probabilistic modelling for DNA mixture analysis , 2008 .

[40]  M W Perlin,et al.  Toward fully automated genotyping: genotyping microsatellite markers by deconvolution. , 1995, American journal of human genetics.

[41]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[42]  John M. Butler,et al.  NIST Mixture Interpretation Interlaboratory Study 2005 (MIX05) , 2005 .

[43]  James Curran,et al.  A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci , 2005, Nucleic acids research.

[44]  J. Whitaker,et al.  Analysis and interpretation of mixed forensic stains using DNA STR profiling. , 1998, Forensic science international.

[45]  W R Mayr,et al.  DNA commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. , 2006, Forensic science international.

[46]  Keith Inman,et al.  Run‐Specific Limits of Detection and Quantitation for STR‐based DNA Testing , 2007, Journal of forensic sciences.

[47]  Steffen L. Lauritzen,et al.  A gamma model for {DNA} mixture analyses , 2007 .

[48]  C. Caskey,et al.  DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. , 1991, American journal of human genetics.

[49]  Anne Lohrli Chapman and Hall , 1985 .

[50]  J. Curran A MCMC method for resolving two person mixtures. , 2008, Science & justice : journal of the Forensic Science Society.

[51]  James Curran,et al.  The low-template-DNA (stochastic) threshold--its determination relative to risk analysis for national DNA databases. , 2009, Forensic science international. Genetics.

[52]  Bruce Budowle,et al.  Validity of low copy number typing and applications to forensic science. , 2009, Croatian medical journal.

[53]  Giuseppe Lancia,et al.  Genotyping of Pooled Microsatellite Markers by Combinatorial Optimization Techniques , 1998, Discret. Appl. Math..

[54]  A. Orpana,et al.  Accuracy in amplification , 2001, Nature Biotechnology.