Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation

We propose a construction scheme of a two-photon polarization controlled arbitrary phase gate based on weak cross-phase modulation. Assisted with weak cross-phase modulation and homodyne measurement on the coherent states, the individual photons are entangled together. Employing the combination of optical elements and classical feed-forward techniques, the target photon can have a conditionally shifted arbitrary phase with efficiency approaching nearly unity. With a large-amplitude coherent state, the high success probability of the controlled arbitrary phase gate can be guaranteed.

[1]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[4]  Guang-Can Guo,et al.  Linear optical scheme for direct implementation of a nondestructive N -qubit controlled phase gate , 2006 .

[5]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[6]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[7]  Yan Xia,et al.  Controlled implementation of two-photon controlled phase gate within a network , 2010, Quantum Inf. Comput..

[8]  S. E. Harris,et al.  Low-light-level nonlinear optics with slow light , 2003 .

[9]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[10]  Julio Gea-Banacloche,et al.  Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets , 2009, 0911.4682.

[11]  Jonathan P. Dowling,et al.  Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements , 2002 .

[12]  C. Gerry,et al.  Quantum non-demolition measurement of photon number using weak nonlinearities , 2008 .

[13]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[14]  Shi-Qing Tang,et al.  Photonic two-qubit parity gate with tiny cross–Kerr nonlinearity , 2011, 1112.6135.

[15]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[16]  Qi Guo,et al.  Simplified optical quantum-information processing via weak cross-Kerr nonlinearities , 2011 .

[17]  Shou Zhang,et al.  One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator , 2012 .

[18]  Keiji Sasaki,et al.  Optimized phase switching using a single-atom nonlinearity , 2002, quant-ph/0208029.

[19]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[20]  A. Zeilinger,et al.  A high-speed tunable beam splitter for feed-forward photonic quantum information processing. , 2011, Optics express.

[21]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[22]  Jie Song,et al.  Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons , 2011 .

[23]  Shota Yokoyama,et al.  Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. , 2011, Physical review letters.

[24]  Jeffrey H. Shapiro,et al.  Single-photon Kerr nonlinearities do not help quantum computation , 2006 .

[25]  G. J. Milburn,et al.  Quantum-information processing via a lossy bus , 2006, quant-ph/0607206.

[26]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[27]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[28]  Kae Nemoto,et al.  Loss in hybrid qubit-bus couplings and gates , 2008, 0804.3240.

[29]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[30]  Bing He,et al.  Single-photon logic gates using minimal resources , 2009, 0909.0300.

[31]  L. Ye,et al.  Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity , 2011, 1403.5041.

[32]  Jian Li,et al.  Quantum control gates with weak cross-Kerr nonlinearity , 2008, 0811.3364.

[33]  Phoenix,et al.  Wave-packet evolution in the damped oscillator. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[34]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[35]  Aephraim M. Steinberg,et al.  Amplifying single-photon nonlinearity using weak measurements. , 2010, Physical review letters.

[36]  R. Muller,et al.  Configuration interaction calculations of the controlled phase gate in double quantum dot qubits , 2011, 1106.1441.

[37]  Barry C. Sanders,et al.  Entanglement creation with negative index metamaterials , 2012, 1205.4506.

[38]  Hyunseok Jeong Quantum computation using weak nonlinearities: Robustness against decoherence , 2006 .

[39]  Fu-Guo Deng,et al.  Efficient multipartite entanglement purification with the entanglement link from a subspace , 2011, 1110.0059.

[40]  J. Eisert,et al.  Experimental implementation of the optimal linear-optical controlled phase gate. , 2010, Physical review letters.

[41]  Bing He,et al.  Universal entangler with photon pairs in arbitrary states , 2008, 0806.4216.

[42]  Masato Koashi,et al.  Probabilistic manipulation of entangled photons , 2001 .

[43]  Bing He,et al.  Creation of high-quality long-distance entanglement with flexible resources , 2008, 0808.2320.

[44]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[45]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[46]  Dong Yang,et al.  Experimental free-space quantum teleportation , 2010 .

[47]  Yong-Fan Chen,et al.  Low-light-level cross-phase modulation by quantum interference , 2010 .

[48]  J. Bergou,et al.  Universal discriminator for completely unknown optical qubits , 2007, 0706.2429.

[49]  E. Knill Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics , 2003, quant-ph/0307015.

[50]  Z. Zhou,et al.  One-step implementation of a multiqubit controlled-phase-flip gate (7 pages) , 2006 .

[51]  Quantum logic between atoms inside a high-Q optical cavity , 2002, quant-ph/0209096.

[52]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[53]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[54]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[55]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[56]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[57]  Jie Song,et al.  Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity , 2011 .

[58]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[59]  Yong Zhang,et al.  Polarization-entanglement purification and concentration using cross-kerr nonlinearity , 2011, Quantum Inf. Comput..

[60]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[61]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[62]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[63]  Xin-Wen Wang,et al.  Nondestructive Greenberger-Horne-Zeilinger-state analyzer , 2013, Quantum Inf. Process..

[64]  Guang-Can Guo,et al.  Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors , 2007 .

[65]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[66]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[67]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[68]  Nearly deterministic controlled-not gate with weak cross-kerr nonlinearities , 2012 .

[69]  Christoph Simon,et al.  Cross-Kerr nonlinearity between continuous-mode coherent states and single photons , 2011, 1102.3724.

[70]  Guang-Can Guo,et al.  One-step implementation of an N -qubit controlled-phase gate with neutral atoms trapped in an optical cavity , 2007 .

[71]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.