Synthesis and properties of colloidal heteronanocrystals

Colloidal heteronanocrystals (HNCs) can be regarded as solution-grown inorganic–organic hybrid nanomaterials, since they consist of inorganic nanoparticles that are coated with a layer of organic ligand molecules. The hybrid nature of these nanostructures provides great flexibility in engineering their physical and chemical properties. The inorganic particles are heterostructured, i.e. they comprise two (or more) different materials joined together, what gives them remarkable and unique properties that can be controlled by the composition, size and shape of each component of the HNC. The interaction between the inorganic component and the organic ligand molecules allows the size and shape of the HNCs to be controlled and gives rise to novel properties. Moreover, the organic surfactant layer opens up the possibility of surface chemistry manipulation, making it possible to tailor a number of properties. These features have turned colloidal HNCs into promising materials for a number of applications, spurring a growing interest on the investigation of their preparation and properties. This critical review provides an overview of recent developments in this rapidly expanding field, with emphasis on semiconductor HNCs (e.g., quantum dots and quantum rods). In addition to defining the state of the art and highlighting the key issues in the field, this review addresses the fundamental physical and chemical principles needed to understand the properties and preparation of colloidal HNCs (283 references).

[1]  J. F. Creemer,et al.  Atomic Imaging of Phase Transitions and Morphology Transformations in Nanocrystals , 2009, Advanced materials.

[2]  D. Ginger,et al.  Quantitative Study of the Effects of Surface Ligand Concentration on CdSe Nanocrystal Photoluminescence , 2007 .

[3]  A. J. McQuillan,et al.  Synthesis of CdSeS Nanocrystals in Coordinating and Noncoordinating Solvents: Solvent's Role in Evolution of the Optical and Structural Properties , 2007 .

[4]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[5]  D. Gamelin,et al.  Charge-controlled magnetism in colloidal doped semiconductor nanocrystals , 2010 .

[6]  A. P. Alivisatos,et al.  First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. , 2005, Journal of Physical Chemistry B.

[7]  M. Shim,et al.  Permanent dipole moment and charges in colloidal semiconductor quantum dots , 1999 .

[8]  M. Bawendi,et al.  Synthesis of CdSe/CdTe nanobarbells. , 2006, Journal of the American Chemical Society.

[9]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[10]  T. Hyeon,et al.  Kinetics of monodisperse iron oxide nanocrystal formation by "heating-up" process. , 2007, Journal of the American Chemical Society.

[11]  Jan F. Schmidt,et al.  Shallow donors in semiconductor nanoparticles: limit of the effective mass approximation. , 2005, Physical review letters.

[12]  L. Manna,et al.  Growth of colloidal nanoparticles of group II–VI and IV–VI semiconductors on top of magnetic iron–platinum nanocrystals , 2008 .

[13]  S. Wuister,et al.  Luminescence and growth of CdTe quantum dots and clusters , 2003 .

[14]  E. Lifshitz,et al.  Optically detected magnetic resonance studies of colloidal semiconductor nanocrystals. , 2004, Annual review of physical chemistry.

[15]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[16]  A. Alivisatos,et al.  Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. , 2007, Journal of the American Chemical Society.

[17]  S. Tretiak,et al.  Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters. , 2009, Journal of the American Chemical Society.

[18]  Jeffrey L. Blackburn,et al.  Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition , 2003 .

[19]  Marius Grundmann,et al.  The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals , 1998 .

[20]  James McBride,et al.  Structural basis for near unity quantum yield core/shell nanostructures. , 2006, Nano letters.

[21]  Igor L. Medintz,et al.  Potential clinical applications of quantum dots , 2008, International journal of nanomedicine.

[22]  Alex Rhee,et al.  Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. , 2007, Nano letters.

[23]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[24]  Paul Mulvaney,et al.  Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: the effects of core size and shell thickness. , 2009, Journal of the American Chemical Society.

[25]  A. Meijerink,et al.  Quantum efficiency of europium emission from nanocrystalline powders of Lu2O3:Eu , 2003 .

[26]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[27]  C. M. Donegá Formation of nanoscale spatially indirect excitons: Evolution of the type-II optical character of CdTe/CdSe heteronanocrystals , 2010 .

[28]  R. Koole,et al.  The hidden role of acetate in the PbSe nanocrystal synthesis. , 2006, Journal of the American Chemical Society.

[29]  R Richard Nötzel,et al.  Self-organized growth of quantum-dot structures , 1996 .

[30]  P. Guyot-Sionnest,et al.  Preparation and optical properties of silver chalcogenide coated gold nanorods , 2006 .

[31]  Giovanni Bertoni,et al.  Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via "one-pot" cation exchange and seeded growth. , 2010, Nano letters.

[32]  D. V. Petrov,et al.  Size and Band-Gap Dependences of the First Hyperpolarizability of CdxZn1-xS Nanocrystals , 2002 .

[33]  Andrey L. Rogach,et al.  Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. , 2009, ACS nano.

[34]  L. Manna,et al.  Selective reactions on the tips of colloidal semiconductor nanorods , 2006 .

[35]  I. Moreels,et al.  Nuclear magnetic resonance spectroscopy demonstrating dynamic stabilization of CdSe quantum dots by alkylamines , 2010 .

[36]  P. Provencio,et al.  Synthesis, optical properties, and growth mechanism of blue-emitting CdSe nanorods. , 2004, Journal of the American Chemical Society.

[37]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[38]  Tymish Y. Ohulchanskyy,et al.  A general approach to binary and ternary hybrid nanocrystals. , 2006, Nano letters.

[39]  F. Wise,et al.  Synthesis of monodisperse PbSe nanorods: a case for oriented attachment. , 2010, Journal of the American Chemical Society.

[40]  Shouheng Sun,et al.  Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. , 2009, Chemical Society reviews.

[41]  F. García-Santamaría,et al.  Suppressed auger recombination in "giant" nanocrystals boosts optical gain performance. , 2009, Nano letters.

[42]  J. Ying,et al.  Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. , 2007, Angewandte Chemie.

[43]  Moungi G Bawendi,et al.  Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. , 2010, Nano letters.

[44]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[45]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[46]  Liberato Manna,et al.  Synthesis, properties and perspectives of hybrid nanocrystal structures. , 2006, Chemical Society reviews.

[47]  G. Strouse,et al.  Size- and site-dependent reconstruction in CdSe QDs evidenced by 77Se{1H} CP-MAS NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[48]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[49]  U. Banin,et al.  Tunneling and optical spectroscopy of semiconductor nanocrystals. , 2003, Annual review of physical chemistry.

[50]  A. Bol,et al.  Time-resolved luminescence of ZnS:Mn2+ nanocrystals , 2002 .

[51]  Wilfried van Sark,et al.  Photooxidation and Photobleaching of Single CdSe/ZnS Quantum Dots Probed by Room-Temperature Time-Resolved Spectroscopy , 2001 .

[52]  G. Pandraud,et al.  Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. , 2008, Nano letters.

[53]  J. Ying,et al.  Diffusion of gold from the inner core to the surface of Ag(2)S nanocrystals. , 2010, Journal of the American Chemical Society.

[54]  Gregory D. Scholes,et al.  Controlling the Optical Properties of Inorganic Nanoparticles , 2008 .

[55]  U. Banin,et al.  Size dependence of molar absorption coefficients of CdSe semiconductor quantum rods. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  H. Goesmann,et al.  Nanoparticulate functional materials. , 2010, Angewandte Chemie.

[57]  Shuming Nie,et al.  Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. , 2003, Journal of the American Chemical Society.

[58]  A. Rogach,et al.  Spatio-temporal dynamics of coupled electrons and holes in nanosize CdSe-CdS semiconductor tetrapods , 2010 .

[59]  Victor I. Klimov,et al.  Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime , 2003 .

[60]  B. Dubertret,et al.  Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. , 2010, Journal of the American Chemical Society.

[61]  M. Chergui,et al.  Synthesis of high quality zinc blende CdSe nanocrystals. , 2005, The journal of physical chemistry. B.

[62]  M. Shim,et al.  γ-Fe2O3/II−VI Sulfide Nanocrystal Heterojunctions , 2005 .

[63]  P. Guyot-Sionnest,et al.  Intraband spectroscopy and band offsets of colloidal II-VI core/shell structures. , 2007, The Journal of chemical physics.

[64]  K. Jensen,et al.  Properties of the CdSe(0001), (0001), and (1120) single crystal surfaces: Relaxation, reconstruction, and adatom and admolecule adsorption. , 2005, The journal of physical chemistry. B.

[65]  G. Scholes,et al.  Nanorod heterostructures showing photoinduced charge separation. , 2007, Small.

[66]  R. Murray,et al.  Substituent effects on the exchange dynamics of ligands on 1.6 nm diameter gold nanoparticles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[67]  D. F. Kelley,et al.  Role of magic-sized clusters in the synthesis of CdSe nanorods. , 2010, ACS nano.

[68]  T. Kuech,et al.  Surface Chemistry of Prototypical Bulk II-VI and III-V Semiconductors and Implications for Chemical Sensing. , 2000, Chemical reviews.

[69]  Thomas A. Klar,et al.  Energy transfer with semiconductor nanocrystals , 2009 .

[70]  U. Banin,et al.  Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. , 2008, Nano letters.

[71]  G. Scholes,et al.  Exciton Trapping and Recombination in Type II CdSe/CdTe Nanorod Heterostructures , 2008 .

[72]  M. L. Curri,et al.  Shape and Phase Control of Colloidal ZnSe Nanocrystals , 2005 .

[73]  Cunhai Dong,et al.  Cation exchange in lanthanide fluoride nanoparticles. , 2009, ACS nano.

[74]  U. Banin,et al.  Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles. , 2010, ACS nano.

[75]  N. Pradhan,et al.  Surface ligand dynamics in growth of nanocrystals. , 2007, Journal of the American Chemical Society.

[76]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[77]  Stephen G. Hickey,et al.  Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals , 2003 .

[78]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[79]  H. Zandbergen,et al.  Energetics of polar and nonpolar facets of PbSe nanocrystals from theory and experiment. , 2010, ACS nano.

[80]  T. Vlugt,et al.  Time-dependent photoluminescence spectroscopy as a tool to measure the ligand exchange kinetics on a quantum dot surface. , 2008, ACS nano.

[81]  Bai Yang,et al.  CdS magic-sized nanocrystals exhibiting bright band gap photoemission via thermodynamically driven formation. , 2009, ACS nano.

[82]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[83]  R. Finke,et al.  Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. , 2008, Journal of colloid and interface science.

[84]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[85]  D. Gamelin,et al.  Dopant-carrier magnetic exchange coupling in colloidal inverted core/shell semiconductor nanocrystals. , 2009, Nano letters.

[86]  P. S. Nair,et al.  Evolutionary shape control during colloidal quantum-dot growth. , 2007, Small.

[87]  Brad A. Kairdolf,et al.  One-pot synthesis, encapsulation, and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands. , 2008, Journal of the American Chemical Society.

[88]  V. Klimov Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. , 2007, Annual review of physical chemistry.

[89]  Xiaogang Peng,et al.  Temperature dependence of "elementary processes" in doping semiconductor nanocrystals. , 2009, Journal of the American Chemical Society.

[90]  Alf Mews,et al.  Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. , 2005, Journal of the American Chemical Society.

[91]  L. Manna,et al.  Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. , 2006, Journal of the American Chemical Society.

[92]  P. Mulvaney,et al.  The effects of chemisorption on the luminescence of CdSe quantum dots. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[93]  I. Moreels,et al.  PbTe|CdTe Core|Shell Particles by Cation Exchange, a HR-TEM study , 2009 .

[94]  Paul I. Archer,et al.  Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots , 2009, Science.

[95]  G. Scholes,et al.  Control of exciton spin relaxation by electron-hole decoupling in type-II nanocrystal heterostructures. , 2008, Nano letters.

[96]  Ziyu Wu,et al.  Insights into initial kinetic nucleation of gold nanocrystals. , 2010, Journal of the American Chemical Society.

[97]  P. Liljeroth,et al.  Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. , 2005, Chemical Society reviews.

[98]  Sander F. Wuister,et al.  Efficient energy transfer between nanocrystalline YAG:Ce and TRITC , 2004 .

[99]  D. Petrov,et al.  First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering , 2000 .

[100]  Jan F. Schmidt,et al.  Donor-acceptor pairs in the confined structure of ZnO nanocrystals , 2006 .

[101]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[102]  V. Klimov,et al.  Infrared-active heterostructured nanocrystals with ultralong carrier lifetimes. , 2010, Journal of the American Chemical Society.

[103]  E. Kumacheva,et al.  Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. , 2010, Nature nanotechnology.

[104]  P. Reiss,et al.  Optical properties of core/multishell CdSe/Zn(S, Se) nanocrystals , 2004 .

[105]  Andreas Kornowski,et al.  One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and greener chemical approaches , 2003 .

[106]  Bartosz A Grzybowski,et al.  Nanoparticles functionalised with reversible molecular and supramolecular switches. , 2010, Chemical Society reviews.

[107]  P. Liljeroth,et al.  Hole-induced electron transport through core-shell quantum dots: a direct measurement of the electron-hole interaction. , 2010, Nano letters.

[108]  U. Banin,et al.  Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. , 2009, Journal of the American Chemical Society.

[109]  R. Janssen,et al.  Highly luminescent ultranarrow Mn doped ZnSe nanowires. , 2009, Nano letters.

[110]  Gang Han,et al.  Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. , 2010, Nano letters.

[111]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[112]  V. Bulović,et al.  Blue luminescence from (CdS)ZnS core-shell nanocrystals. , 2004, Angewandte Chemie.

[113]  E. Shevchenko,et al.  "Magnet-in-the-semiconductor" FePt-PbS and FePt-PbSe nanostructures: magnetic properties, charge transport, and magnetoresistance. , 2010, Journal of the American Chemical Society.

[114]  A. Meijerink,et al.  On the Incorporation Mechanism of Hydrophobic Quantum Dots in Silica Spheres by a Reverse Microemulsion Method , 2008 .

[115]  Xiaogang Peng,et al.  Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor , 2010 .

[116]  Zhiyong Tang,et al.  Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires , 2002, Science.

[117]  P. Liljeroth,et al.  Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. , 2005, Small.

[118]  Andrey L. Rogach,et al.  Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices , 2008 .

[119]  Younan Xia,et al.  Gold‐Based Hybrid Nanocrystals Through Heterogeneous Nucleation and Growth , 2010, Advanced materials.

[120]  Horst Weller,et al.  Evidence for surface reconstruction on InAs nanocrystals , 2002 .

[121]  M. Dijkstra,et al.  Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography. , 2009, Angewandte Chemie.

[122]  A. Rogach Semiconductor nanocrystal quantum dots : synthesis, assembly, spectroscopy and applications , 2008 .

[123]  Vincenzo Grillo,et al.  Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. , 2007, Nano letters.

[124]  A. Alivisatos,et al.  Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy , 1999 .

[125]  Andries Meijerink,et al.  Ultrafast exciton dynamics in CdSe quantum dots studied from bleaching recovery and fluorescence transients. , 2006, The journal of physical chemistry. B.

[126]  Siddhartha Ghosh,et al.  QUANTUM DOT OPTO-ELECTRONIC DEVICES , 2004 .

[127]  Wolfgang Knoll,et al.  Composition-tunable Zn(x)Cd(1-x)Se nanocrystals with high luminescence and stability. , 2003, Journal of the American Chemical Society.

[128]  Lin-wang Wang,et al.  Colloidal PbTe–Au nanocrystal heterostructures , 2010 .

[129]  M. Bonn,et al.  Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells , 2010 .

[130]  M. Yin,et al.  Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals. , 2008, Nature materials.

[131]  Hyungrak Kim,et al.  Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. , 2005, Journal of the American Chemical Society.

[132]  A Paul Alivisatos,et al.  From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. , 2009, Annual review of physical chemistry.

[133]  Paul I. Archer,et al.  Exciton storage by Mn(2+) in colloidal Mn(2+)-doped CdSe quantum dots. , 2008, Nano letters.

[134]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[135]  D. Gamelin,et al.  Electron Confinement Effects in the EPR Spectra of Colloidal n-Type ZnO Quantum Dots , 2008 .

[136]  A. Alivisatos,et al.  Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. , 2009, Journal of the American Chemical Society.

[137]  I. Moreels,et al.  In situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy. , 2009, Journal of the American Chemical Society.

[138]  Young Woon Kim,et al.  Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. , 2005, Journal of the American Chemical Society.

[139]  T. Nann,et al.  Shape control of II-VI semiconductor nanomaterials. , 2006, Small.

[140]  Chenglin Yan,et al.  Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er nanoheterostructures. , 2010, Journal of the American Chemical Society.

[141]  John Silcox,et al.  Non-blinking semiconductor nanocrystals , 2009, Nature.

[142]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[143]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[144]  M. Koeberg,et al.  Direct observation of electron-to-hole energy transfer in CdSe quantum dots. , 2006, Physical review letters.

[145]  Brahim Lounis,et al.  Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. , 2003, Physical review letters.

[146]  M. Califano Direct and inverse auger processes in InAs nanocrystals: can the decay signature of a trion be mistaken for carrier multiplication? , 2009, ACS nano.

[147]  M. A. Malik,et al.  Precursor chemistry for main group elements in semiconducting materials. , 2010, Chemical reviews.

[148]  Stanislaus S. Wong,et al.  Carbon nanotube-nanocrystal heterostructures. , 2009, Chemical Society reviews.

[149]  Jian-Min Zuo,et al.  Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. , 2008, Nature materials.

[150]  P. Guyot-Sionnest,et al.  Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals. , 2007, Physical review letters.

[151]  P. Barboux,et al.  Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. , 2007, Nano letters.

[152]  M. Bode,et al.  Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots , 2006 .

[153]  James E Hutchison,et al.  Toward greener nanosynthesis. , 2007, Chemical reviews.

[154]  A. Paul Alivisatos,et al.  Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures , 2010 .

[155]  Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. , 2001, Journal of the American Chemical Society.

[156]  S. Wuister,et al.  Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent. , 2004, Journal of the American Chemical Society.

[157]  T. Vlugt,et al.  Differences in Cross-Link Chemistry between Rigid and Flexible Dithiol Molecules Revealed by Optical Studies of CdTe Quantum Dots , 2007 .

[158]  Stephen G. Hickey,et al.  Highly Luminescent Water-Soluble CdTe Quantum Dots , 2003 .

[159]  Zhiyong Tang,et al.  One‐Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise , 2005 .

[160]  A. P. Alivisatos,et al.  Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. , 2005, Nano letters.

[161]  R. Koole,et al.  Dipolar structures in colloidal dispersions of PbSe and CdSe quantum dots. , 2007, Nano letters.

[162]  Rodolphe Jaffiol,et al.  Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. , 2010, ACS nano.

[163]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[164]  P. El-Khoury,et al.  Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. , 2009, Journal of the American Chemical Society.

[165]  R. Finke,et al.  Transition-metal nanocluster size vs formation time and the catalytically effective nucleus number: a mechanism-based treatment. , 2008, Journal of the American Chemical Society.

[166]  A. Gossard,et al.  Photon storage with nanosecond switching in coupled quantum well nanostructures. , 2007, Nano letters.

[167]  G. Scholes,et al.  On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics , 2010 .

[168]  U. Kolb,et al.  Design and synthesis of colloidal nanocrystal heterostructures with tetrapod morphology. , 2006, Small.

[169]  G. Urban,et al.  Blue luminescence and superstructures from magic size clusters of CdSe. , 2009, Nano letters.

[170]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[171]  S. Tretiak,et al.  Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. , 2007, Journal of the American Chemical Society.

[172]  G. Scholes,et al.  Shape tuning of type II CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth. , 2009, Journal of the American Chemical Society.

[173]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[174]  A. Alivisatos,et al.  Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories , 2009, Science.

[175]  Jongwoo Lim,et al.  ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties , 2010 .

[176]  A. Kahn Thirty years of atomic and electronic structure determination of surfaces of tetrahedrally coordinated compound semiconductors , 1994 .

[177]  P. El-Khoury,et al.  Ultrafast carrier dynamics in type II ZnSe/CdS/ZnSe nanobarbells. , 2010, ACS nano.

[178]  L. Feldman,et al.  Synthesis, Surface Studies, Composition and Structural Characterization of CdSe, Core/Shell, and Biologically Active Nanocrystals. , 2007, Surface science reports.

[179]  Guglielmo Lanzani,et al.  Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. , 2009, Journal of the American Chemical Society.

[180]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[181]  Shuhong Yu,et al.  Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future , 2009 .

[182]  Kyung-Sang Cho,et al.  Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. , 2005, Journal of the American Chemical Society.

[183]  Uri Banin,et al.  Growth of Photocatalytic CdSe–Pt Nanorods and Nanonets , 2008 .

[184]  Benoit Dubertret,et al.  Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. , 2008, Journal of the American Chemical Society.

[185]  B. Korgel,et al.  Coalescence and interface diffusion in linear CdTe/CdSe/CdTe heterojunction nanorods. , 2008, Nano letters.

[186]  Lin-Wang Wang,et al.  Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange , 2007, Science.

[187]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[188]  J. Banfield,et al.  Surface chemistry controls crystallinity of ZnS nanoparticles. , 2006, Nano letters.

[189]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[190]  S. Meskers,et al.  Energy transfer and polarized emission in cadmium selenide nanocrystal solids with mixed dimensionality , 2007 .

[191]  D. Oron,et al.  Multiexcitons in type-II colloidal semiconductor quantum dots , 2007 .

[192]  T. Vlugt,et al.  Adsorption and Binding of Ligands to CdSe Nanocrystals , 2009 .

[193]  P. Cozzoli,et al.  Colloidal Strategies for Preparing Oxide‐Based Hybrid Nanocrystals , 2008 .

[194]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[195]  V. Klimov,et al.  Apparent versus true carrier multiplication yields in semiconductor nanocrystals. , 2010, Nano letters.

[196]  Diffusion of gold into InAs nanocrystals. , 2006, Angewandte Chemie.

[197]  Jan F. Schmidt,et al.  Probing the wave function of shallow Li and Na donors in ZnO nanoparticles. , 2004, Physical review letters.

[198]  Ilya A. Ovid'ko,et al.  Misfit dislocations in nanocomposites with quantum dots, nanowires and their ensembles , 2006 .

[199]  T. Hanrath,et al.  In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. , 2008, Nano letters.

[200]  M. Davidson,et al.  Evolution of Colloidal Nanocrystals: Theory and Modeling of their Nucleation and Growth , 2009 .

[201]  A. Eychmüller,et al.  CdSe nanorod synthesis: a new approach. , 2007, Small.

[202]  Huifang Xu,et al.  Colloidal CdSe quantum wires by oriented attachment. , 2006, Nano letters.

[203]  Francesco Stellacci,et al.  Divalent Metal Nanoparticles , 2007, Science.

[204]  D. Oron,et al.  Universal role of discrete acoustic phonons in the low-temperature optical emission of colloidal quantum dots. , 2009, Physical review letters.

[205]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[206]  Paul Mulvaney,et al.  Nucleation and growth of CdSe nanocrystals in a binary ligand system. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[207]  B. Ye,et al.  Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. , 2009, Inorganic chemistry.

[208]  M. Bonn,et al.  Assessment of carrier-multiplication efficiency in bulk PbSe and PbS , 2009 .

[209]  T. Krauss,et al.  Small-angle rotation in individual colloidal CdSe quantum rods. , 2008, ACS nano.

[210]  M. Bawendi,et al.  CdSe nanocrystal based chem-/bio- sensors. , 2007, Chemical Society reviews.

[211]  E. Weiss,et al.  Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand. , 2010, ACS nano.

[212]  Shouheng Sun,et al.  Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. , 2005, Nano letters.

[213]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[214]  Prashant K. Jain,et al.  Nanoheterostructure cation exchange: anionic framework conservation. , 2010, Journal of the American Chemical Society.

[215]  S. Wuister,et al.  Temperature-dependent energy transfer in cadmium telluride quantum dot solids. , 2005, The journal of physical chemistry. B.

[216]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[217]  Miguel Valcárcel,et al.  Quantum dots luminescence enhancement due to illumination with UV/Vis light. , 2009, Chemical communications.

[218]  Royce W Murray,et al.  Ligand effects on optical properties of CdSe nanocrystals. , 2005, The journal of physical chemistry. B.

[219]  Kookheon Char,et al.  Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients , 2008 .

[220]  A. Eychmüller,et al.  Synthesis of Amphiphilic CdTe Nanocrystals , 2009 .

[221]  Roberto Cingolani,et al.  Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures. , 2009, Nano letters.

[222]  L. Manna,et al.  Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field , 2008 .

[223]  Lin-wang Wang,et al.  "Quantum coaxial cables" for solar energy harvesting. , 2007, Nano letters.

[224]  M. Kuno An overview of solution-based semiconductor nanowires: synthesis and optical studies. , 2008, Physical chemistry chemical physics : PCCP.

[225]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[226]  Francesco Stellacci,et al.  From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. , 2006, Journal of the American Chemical Society.

[227]  T. Krauss,et al.  Shell distribution on colloidal CdSe/ZnS quantum dots. , 2005, Nano letters.

[228]  N. Sommerdijk,et al.  Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. , 2007, Journal of the American Chemical Society.

[229]  J. Wachtveitl,et al.  Ultrafast charge separation in multiexcited CdSe quantum dots mediated by adsorbed electron acceptors. , 2009, Journal of the American Chemical Society.

[230]  C. Sönnichsen,et al.  Growth of Gold Tips onto Hyperbranched CdTe Nanostructures , 2008 .

[231]  K. Jensen,et al.  Insights into the kinetics of semiconductor nanocrystal nucleation and growth. , 2009, Journal of the American Chemical Society.

[232]  P. Král,et al.  Dipole-dipole interactions in nanoparticle superlattices. , 2007, Nano letters.

[233]  Klaas Nicolay,et al.  Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. , 2006, Nano letters.

[234]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[235]  M. Steigerwald,et al.  Ligand Control of Growth, Morphology, and Capping Structure of Colloidal CdSe Nanorods , 2007 .

[236]  S. Wuister,et al.  Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. , 2004, The Journal of chemical physics.

[237]  P. J. van der Zaag,et al.  The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots. , 2009, ACS nano.

[238]  P. Kamat,et al.  Photocatalysis with CdSe nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. , 2009, ACS nano.

[239]  Lin-wang Wang,et al.  Selective facet reactivity during cation exchange in cadmium sulfide nanorods. , 2009, Journal of the American Chemical Society.

[240]  N. Kotov,et al.  On the origin of a permanent dipole moment in nanocrystals with a cubic crystal lattice: effects of truncation, stabilizers, and medium for CdS tetrahedral homologues. , 2006, The journal of physical chemistry. B.

[241]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[242]  L. Manna,et al.  Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control , 2006, Nature nanotechnology.

[243]  P. Mulvaney,et al.  Nucleation and growth kinetics of CdSe nanocrystals in octadecene , 2004 .

[244]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[245]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[246]  H. Hillhouse,et al.  Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics , 2009 .

[247]  L. Manna,et al.  Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods. , 2005, Nano letters.

[248]  Guglielmo Lanzani,et al.  CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. , 2009, Journal of the American Chemical Society.

[249]  Zeger Hens,et al.  Surface chemistry of colloidal PbSe nanocrystals. , 2008, Journal of the American Chemical Society.

[250]  Andreas Kornowski,et al.  Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment , 2010, Science.

[251]  P. Guyot-Sionnest,et al.  Slow Electron Cooling in Colloidal Quantum Dots , 2008, Science.

[252]  E. Lifshitz,et al.  Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot. , 2009, Physical review letters.

[253]  D. K. Schwartz,et al.  Mechanisms and kinetics of self-assembled monolayer formation. , 2001, Annual review of physical chemistry.

[254]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[255]  T. Patten,et al.  Identification of acidic phosphorus-containing ligands involved in the surface chemistry of CdSe nanoparticles prepared in tri-N-octylphosphine oxide solvents. , 2008, Journal of the American Chemical Society.

[256]  M. Bawendi,et al.  Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. , 2010, Physical review letters.

[257]  R. Koole,et al.  Size Dependence of the Spontaneous Emission Rate and Absorption Cross Section of CdSe and CdTe Quantum Dots , 2009 .

[258]  P. Lagoudakis,et al.  Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. , 2005, Nano letters.

[259]  Klaas Nicolay,et al.  Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. , 2008, Bioconjugate chemistry.

[260]  Yang Li,et al.  Sequential Growth of Magic‐Size CdSe Nanocrystals , 2007 .

[261]  H. Ågren,et al.  NONLINEAR OPTICAL PROPERTIES OF QUANTUM DOTS: EXCITONS IN NANOSTRUCTURES , 2009 .

[262]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[263]  Sander F. Wuister,et al.  Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots , 2004 .

[264]  P. Guyot-Sionnest,et al.  Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. , 2005, The Journal of chemical physics.

[265]  Tymish Y. Ohulchanskyy,et al.  Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals , 2009 .

[266]  J. Kao,et al.  Spectroscopic identification of tri-n-octylphosphine oxide (TOPO) impurities and elucidation of their roles in cadmium selenide quantum-wire growth. , 2009, Journal of the American Chemical Society.

[267]  E. Rizzardo,et al.  High Activity Phosphine-Free Selenium Precursor Solution for Semiconductor Nanocrystal Growth , 2010 .