Convergence of a finite volume scheme for the convection-diffusion equation with L1 data
暂无分享,去创建一个
[1] T. Gallouët,et al. Non-linear elliptic and parabolic equations involving measure data , 1989 .
[2] A. Prignet. Existence and uniqueness of “entropy” solutions of parabolic problems with L 1 data , 1997 .
[3] T. Gallouët,et al. Nonlinear Parabolic Equations with Measure Data , 1997 .
[4] Yves Coudière,et al. Discrete Sobolev Inequalities and L p Error Estimates for Approximate Finite Volume Solutions of Con , 1998 .
[5] Yves Coudière,et al. Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations , 2001 .
[6] Stéphane Clain. Analyse mathématique et numérique d"un modèle de chauffage par induction , 1994 .
[7] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[8] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[9] Pierre Fabrie,et al. Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .
[10] D. Blanchard,et al. Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[11] J. Vázquez,et al. An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .
[12] Vivette Girault,et al. Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 , 2006, Numerische Mathematik.
[13] T. Gallouët,et al. AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS , 2008 .
[14] Jérôme Droniou,et al. Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data , 2007 .
[15] Thierry Gallouët,et al. Convergence of linear finite elements for diffusion equations with measure data , 2004 .
[16] Raphaèle Herbin,et al. On the Discretization of the Coupled Heat and Electrical Diffusion Problems , 2006, Numerical Methods and Applications.
[17] Raphaèle Herbin,et al. A discretization of phase mass balance in fractional step algorithms for the drift-flux model , 2017 .
[18] R. EYMARD,et al. Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier-Stokes Equations on General 2D or 3D Meshes , 2007, SIAM J. Numer. Anal..
[19] J. Vázquez,et al. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 2018 .
[20] Thierry Gallouët,et al. A Finite Volume Scheme for a Noncoercive Elliptic Equation with Measure Data , 2003, SIAM J. Numer. Anal..
[21] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.