Convergence of a finite volume scheme for the convection-diffusion equation with L1 data

In this paper, we prove the convergence of a finite-volume scheme for the time-dependent convection–diffusion equation with an L 1 right-hand side. To this purpose, we first prove estimates for the discrete solution and for its discrete time and space derivatives. Then we show the convergence of a sequence of discrete solutions obtained with more and more refined discretiza-tions, possibly up to the extraction of a subsequence, to a function which mets the regularity requirements of the weak formulation of the problem; to this purpose, we prove a compactness result, which may be seen as a discrete analogue to Aubin-Simon's lemma. Finally, such a limit is shown to be indeed a weak solution.

[1]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[2]  A. Prignet Existence and uniqueness of “entropy” solutions of parabolic problems with L 1 data , 1997 .

[3]  T. Gallouët,et al.  Nonlinear Parabolic Equations with Measure Data , 1997 .

[4]  Yves Coudière,et al.  Discrete Sobolev Inequalities and L p Error Estimates for Approximate Finite Volume Solutions of Con , 1998 .

[5]  Yves Coudière,et al.  Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations , 2001 .

[6]  Stéphane Clain Analyse mathématique et numérique d"un modèle de chauffage par induction , 1994 .

[7]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[8]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[9]  Pierre Fabrie,et al.  Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .

[10]  D. Blanchard,et al.  Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  J. Vázquez,et al.  An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .

[12]  Vivette Girault,et al.  Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 , 2006, Numerische Mathematik.

[13]  T. Gallouët,et al.  AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS , 2008 .

[14]  Jérôme Droniou,et al.  Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data , 2007 .

[15]  Thierry Gallouët,et al.  Convergence of linear finite elements for diffusion equations with measure data , 2004 .

[16]  Raphaèle Herbin,et al.  On the Discretization of the Coupled Heat and Electrical Diffusion Problems , 2006, Numerical Methods and Applications.

[17]  Raphaèle Herbin,et al.  A discretization of phase mass balance in fractional step algorithms for the drift-flux model , 2017 .

[18]  R. EYMARD,et al.  Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier-Stokes Equations on General 2D or 3D Meshes , 2007, SIAM J. Numer. Anal..

[19]  J. Vázquez,et al.  An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 2018 .

[20]  Thierry Gallouët,et al.  A Finite Volume Scheme for a Noncoercive Elliptic Equation with Measure Data , 2003, SIAM J. Numer. Anal..

[21]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.