DISCOVERER: a tool for solving semi-algebraic systems
暂无分享,去创建一个
[1] George E. Collins,et al. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..
[2] Richard D. Jenks,et al. AXIOM: the scientific computation system , 1992 .
[3] Hirokazu Anai,et al. Development of SyNRAC , 2005, International Conference on Computational Science.
[4] Bican Xia,et al. A complete algorithm for automated discovering of a class of inequality-type theorems , 2001, Science in China Series F Information Sciences.
[5] Masayuki Noro,et al. Risa/Asir—a computer algebra system , 1992, ISSAC '92.
[6] Thomas Sturm,et al. New Domains for Applied Quantifier Elimination , 2006, CASC.
[7] Barbara J. Grosz,et al. for the Study of Language and , 2002 .
[8] Kosaku Nagasaka. 新人賞受賞論文 Using Coefficient-wise Tolerance in Symbolic-Numeric Algorithms for Polynomials , 2006 .
[9] Akira Suzuki,et al. A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases , 2006, ISSAC '06.
[10] Thomas Sturm,et al. REDLOG: computer algebra meets computer logic , 1997, SIGS.
[11] Ting Zhang,et al. Real solution isolation using interval arithmetic , 2006, Comput. Math. Appl..
[12] Katsusuke Nabeshima,et al. A speed-up of the algorithm for computing comprehensive Gröbner systems , 2007, ISSAC '07.
[13] Bican Xia,et al. AUTOMATED DEDUCTION IN REAL GEOMETRY , 2004 .
[14] Bican Xia,et al. An Algorithm for Isolating the Real Solutions of Semi-algebraic Systems , 2002, J. Symb. Comput..
[15] Antonio Montes,et al. Improving the DISPGB algorithm using the discriminant ideal , 2006, J. Symb. Comput..
[16] Bican Xia,et al. A complete algorithm for counting real solutions of polynomial systems of equations and inequalities , 2002 .
[17] Richard J. Fateman,et al. A Review of Mathematica , 1992, J. Symb. Comput..
[18] Bican Xia,et al. Automated Deduction in Geometry , 2000, Lecture Notes in Computer Science.
[19] Mark Sofroniou,et al. Precise numerical computation , 2005, J. Log. Algebraic Methods Program..
[20] Hirokazu Anai,et al. Development of SyNRAC-Formula Description and New Functions , 2004, International Conference on Computational Science.
[21] Hirokazu Anai,et al. SyNRAC: A Maple-Package for Solving Real Algebraic Constraints , 2003, International Conference on Computational Science.
[22] 佐藤 洋祐,et al. 特集 Comprehensive Grobner Bases , 2007 .
[23] Antonio Montes,et al. A New Algorithm for Discussing Gröbner Bases with Parameters , 2002, J. Symb. Comput..
[24] H. Yanami,et al. Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a CACSD toolbox , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..