Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

[1]  J. Eapen,et al.  Multicomponent diffusion in molten LiCl-KCl: dynamical correlations and divergent Maxwell-Stefan diffusivities. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Eapen,et al.  Dynamic transitions in molecular dynamics simulations of supercooled silicon , 2013 .

[3]  M. Karplus,et al.  A simplified confinement method for calculating absolute free energies and free energy and entropy differences. , 2013, The journal of physical chemistry. B.

[4]  Yousung Jung,et al.  On the absolute thermodynamics of water from computer simulations: a comparison of first-principles molecular dynamics, reactive and empirical force fields. , 2012, The Journal of chemical physics.

[5]  Pin-Kuang Lai,et al.  Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model. , 2012, Physical chemistry chemical physics : PCCP.

[6]  D. Buzatu,et al.  Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions. , 2012, The journal of physical chemistry. B.

[7]  W. Goddard,et al.  Role of specific cations and water entropy on the stability of branched DNA motif structures. , 2012, The journal of physical chemistry. B.

[8]  André Bardow,et al.  Fick Diffusion Coefficients in Ternary Liquid Systems from Equilibrium Molecular Dynamics Simulations , 2012 .

[9]  G. Orkoulas,et al.  Simulation of fluid–solid coexistence via thermodynamic integration using a modified cell model , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  H. Hasse,et al.  Prediction of Transport Properties of Liquid Ammonia and Its Binary Mixture with Methanol by Molecular Simulation , 2012 .

[11]  Han-Soo Lee,et al.  Recycling of LiCl–KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides , 2012 .

[12]  P. Souček,et al.  On the electrochemical formation of Pu–Al alloys in molten LiCl–KCl , 2012 .

[13]  S. Vandarkuzhali,et al.  Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl–KCl eutectic melt , 2012 .

[14]  D. Manolopoulos,et al.  Thermodynamic integration from classical to quantum mechanics. , 2011, The Journal of chemical physics.

[15]  D. Bedeaux,et al.  Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics. , 2011, The journal of physical chemistry. B.

[16]  P. Madden,et al.  Polarization effects in ionic solids and melts , 2011, 1502.07534.

[17]  G. Galli,et al.  Entropy of liquid water from ab initio molecular dynamics. , 2011, The journal of physical chemistry. B.

[18]  André Bardow,et al.  Predictive Darken Equation for Maxwell-Stefan Diffusivities in Multicomponent Mixtures , 2011 .

[19]  A. Firoozabadi,et al.  Form of multicomponent Fickian diffusion coefficients matrix , 2011 .

[20]  L. Stixrude,et al.  First principles molecular dynamics simulations of diopside (CaMgSi2O6) liquid to high pressure , 2011 .

[21]  M. Salanne,et al.  Studies of the local structures of molten metal halides , 2011 .

[22]  Prabal K Maiti,et al.  Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic Model. , 2011, Journal of chemical theory and computation.

[23]  S. Bonev,et al.  Structural and thermodynamic properties of liquid Na-Li and Ca-Li alloys at high pressure , 2011 .

[24]  T. Vlugt,et al.  Multicomponent Maxwell−Stefan Diffusivities at Infinite Dilution , 2011 .

[25]  T. Vlugt,et al.  Maxwell-Stefan diffusivities in liquid mixtures: using molecular dynamics for testing model predictions , 2011 .

[26]  W. Goddard,et al.  Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics. , 2011, Physical chemistry chemical physics : PCCP.

[27]  Dieter Bothe,et al.  On the Maxwell-Stefan Approach to Multicomponent Diffusion , 2010, 1007.1775.

[28]  W. Hasselbach,et al.  Zeitschrift Für Naturforschung Section C , 2011 .

[29]  K. Ayappa,et al.  Entropy and dynamics of water in hydration layers of a bilayer. , 2010, The Journal of chemical physics.

[30]  Wilfried Wurth,et al.  The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons , 2010, Proceedings of the National Academy of Sciences.

[31]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[32]  C. Woodward,et al.  Ab initio simulations of molten Ni alloys , 2010 .

[33]  W. Goddard,et al.  Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations. , 2010, The journal of physical chemistry. B.

[34]  L. Stixrude,et al.  Viscosity of MgSiO3 Liquid at Earth’s Mantle Conditions: Implications for an Early Magma Ocean , 2010, Science.

[35]  J. Stichlmair,et al.  Measurement and prediction of multicomponent diffusion coefficients in four ternary liquid systems , 2010 .

[36]  C. Bessada,et al.  Measuring self-diffusion coefficients up to 1500 K: a powerful tool to investigate the dynamics and the local structure of inorganic melts. , 2009, Inorganic chemistry.

[37]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[38]  P. Madden,et al.  Diffusion coefficients and local structure in basic molten fluorides: in situ NMR measurements and molecular dynamics simulations. , 2009, Physical chemistry chemical physics : PCCP.

[39]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[40]  F. Schmid,et al.  Computing absolute free energies of disordered structures by molecular simulation. , 2009, The Journal of chemical physics.

[41]  W. Marquardt,et al.  Prediction of multicomponent mutual diffusion in liquids: Model discrimination using NMR data , 2009 .

[42]  J. Perdew,et al.  Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.

[43]  P. Madden,et al.  Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials. , 2009, The Journal of chemical physics.

[44]  K. M. Goff,et al.  Actinide Recovery Experiments with Bench-Scale Liquid Cadmium Cathode in Real Fission Product-Laden Molten Salt , 2009 .

[45]  Mark R. Johnson,et al.  Local structure of liquid CaAl2O4 from ab initio molecular dynamics simulations , 2008 .

[46]  Christopher M. Martin,et al.  Detection of First-Order Liquid/Liquid Phase Transitions in Yttrium Oxide-Aluminum Oxide Melts , 2008, Science.

[47]  B. Kirchner,et al.  Validation of dispersion-corrected density functional theory approaches for ionic liquid systems. , 2008, The journal of physical chemistry. A.

[48]  P. Madden,et al.  Intermediate range chemical ordering of cations in simple molten alkali halides , 2008, 0810.2929.

[49]  P. Madden,et al.  Calculation of activities of ions in molten salts with potential application to the pyroprocessing of nuclear waste. , 2008, The journal of physical chemistry. B.

[50]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[51]  Kensuke Kinoshita,et al.  Diffusion behavior of actinide and lanthanide elements in molten salt for reductive extraction , 2007 .

[52]  Ju Li,et al.  Beyond the Maxwell limit: thermal conduction in nanofluids with percolating fluid structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Juergen Hafner,et al.  Short-range order in liquid aluminum chloride: ab initio molecular dynamics simulations and quantum-chemical calculations. , 2007, The journal of physical chemistry. B.

[54]  P. Brommer,et al.  Potfit: effective potentials from ab initio data , 2007, 0704.0185.

[55]  P. Rodrigues,et al.  Phase diagrams of alkali halides using two interaction models: a molecular dynamics and free energy study. , 2007, The Journal of chemical physics.

[56]  A. Faraone,et al.  Evidence of the existence of the low-density liquid phase in supercooled, confined water , 2007, Proceedings of the National Academy of Sciences.

[57]  Christos Alexopoulos,et al.  A Comprehensive Review of Methods for Simulation Output Analysis , 2006, Proceedings of the 2006 Winter Simulation Conference.

[58]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[59]  Tadashi Inoue,et al.  Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode , 2006 .

[60]  G. Patey,et al.  Structures and rearrangements of LiCl clusters. , 2006, The Journal of chemical physics.

[61]  Akihiro Suzuki,et al.  Study of tritium migration in liquid Li2BeF4 with ab initio molecular dynamics , 2006 .

[62]  J. Garai,et al.  The temperature dependence of the isothermal bulk modulus at 1 bar pressure , 2006, physics/0601101.

[63]  C. Adamo,et al.  Density-functional-based molecular-dynamics simulations of molten salts. , 2005, The Journal of chemical physics.

[64]  R. Konings,et al.  Thermochemical Properties of Lanthanides (Ln = La, Nd) and Actinides (An = U, Np, Pu, Am) in the Molten LiCl-KCl Eutectic , 2005 .

[65]  M. Donohue,et al.  Inversion of multicomponent diffusion equations , 2005 .

[66]  Rajamani Krishna,et al.  The Darken Relation for Multicomponent Diffusion in Liquid Mixtures of Linear Alkanes: An Investigation Using Molecular Dynamics (MD) Simulations , 2005 .

[67]  R. Konings,et al.  Electrochemistry of Uranium in Molten LiCl-KCl Eutectic , 2005 .

[68]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[69]  I T Todorov,et al.  DL_POLY_3: the CCP5 national UK code for molecular–dynamics simulations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[70]  J. Ely,et al.  Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations. , 2004, The Journal of chemical physics.

[71]  P. Madden,et al.  Ion mobilities and microscopic dynamics in liquid (Li,K)Cl. , 2004, The Journal of chemical physics.

[72]  William A. Goddard,et al.  The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids , 2003 .

[73]  M. Ribeiro Chemla Effect in Molten LiCl/KCl and LiF/KF Mixtures , 2003 .

[74]  D. Frenkel,et al.  Calculation of the melting point of NaCl by molecular simulation , 2003 .

[75]  P. Madden,et al.  Molecular dynamics simulations of the liquid–vapor interface of a molten salt. III. Size asymmetry effects and binary mixtures , 2002 .

[76]  M. Ribeiro On the Chemla effect in molten alkali nitrates , 2002 .

[77]  Yasuhiko Ito,et al.  Densities of Eutectic Mixtures of Molten Alkali Chlorides below 673 K , 2001 .

[78]  Osamu Shimomura,et al.  A first-order liquid–liquid phase transition in phosphorus , 2000, Nature.

[79]  I. Okada The Chemla effect ---from the separation of isotopes to the modeling of binary ionic liquids , 1999 .

[80]  Tadashi Inoue,et al.  Measurement of standard potentials of actinides (U,Np,Pu,Am) in LiCl–KCl eutectic salt and separation of actinides from rare earths by electrorefining , 1998 .

[81]  E. R. Cohen An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1998 .

[82]  J. J. Roy,et al.  Separation of Actinides from Rare Earth Elements by Electrorefining in LiCl-KCl Eutectic Salt , 1998 .

[83]  W. Holzapfel,et al.  Equation-of-state data for CsCl-type alkali halides , 1997 .

[84]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[85]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[86]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[87]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[88]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[89]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[90]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[91]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[92]  J. E. Battles,et al.  Electrorefining of uranium and plutonium - A literature review , 1992 .

[93]  M. Chemla,et al.  Ionic mobilities of monovalent cations in molten salt mixtures , 1990 .

[94]  K. W. Bagnall The chemistry of the actinide elements , 1987 .

[95]  M. Kushner Mechanisms for Power Deposition in Ar/SiH4 Capacitively Coupled RF Discharges , 1986, IEEE Transactions on Plasma Science.

[96]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[97]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[98]  Kent R. Wilson,et al.  Thermodynamics and quantum corrections from molecular dynamics for liquid water , 1982 .

[99]  F. Lantelme,et al.  Ionic dynamics in the LiCl–KCl system at liquid state , 1982 .

[100]  G. Janz,et al.  Molten Salts Data: Diffusion Coefficients in Single and Multi‐Component Salt Systems , 1982 .

[101]  C. Caccamo,et al.  Molten alkali-halide mixtures: a molecular-dynamics study of Li/KCl mixtures , 1980 .

[102]  Rajamani Krishna,et al.  THE MAXWELL-STEFAN FORMULATION OF IRREVERSIBLE THERMODYNAMICS FOR SIMULTANEOUS HEAT AND MASS TRANSFER , 1979 .

[103]  G. Janz,et al.  Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems , 1979 .

[104]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[105]  K. E. Starling,et al.  Thermodynamic Properties of a Rigid‐Sphere Fluid , 1970 .

[106]  Howard J. M. Hanley,et al.  Transport phenomena in fluids , 1969 .

[107]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins-Mayer form☆ , 1964 .

[108]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: The Huggins-Mayer and Pauling forms , 1964 .

[109]  R. Mazo,et al.  On the Statistical Mechanical Theory of Solutions , 1958 .

[110]  I. Yaffe,et al.  Electrical Conductance and Density of Molten Salt Systems: KCl–LiCl, KCl–NaCl and KCl–KI , 1955 .

[111]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[112]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .