2-Manifold Surface Sampling and Quality Estimation of Reconstructed Meshes

Construction of intrinsic Delaunay triangulation (iDt for short) on 2-manifolds has attracted considerable attentions recently, due to its theoretical contributions to surface reconstruction. In this paper we analyze a 2-manifold sampling criterion based on iDt in a combinatorial way. The main contribution of this work is to establish the theoretical bounds of iDt mesh quality based on this sampling criterion. In order to construct the iDt mesh from sample points, we propose an approximate iDt mesh reconstruction algorithm using an edge propagation scheme. In real-world point cloud, holes or under sampling regions frequently exist. Based on the sampling criterion, an up sampling scheme and a hole filling algorithm are presented in this paper. Finally examples are presented, illustrating the effectiveness of our proposed algorithms.

[1]  Jack Snoeyink,et al.  A One-Step Crust and Skeleton Extraction Algorithm , 2001, Algorithmica.

[2]  Kai Tang,et al.  Multiresolution free form object modeling with point sampled geometry , 2004, Journal of Computer Science and Technology.

[3]  David Letscher,et al.  Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.

[4]  Yong-Jin Liu,et al.  Optimized triangle mesh reconstruction from unstructured points , 2003, The Visual Computer.

[5]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[6]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[7]  Jim Ruppert,et al.  A new and simple algorithm for quality 2-dimensional mesh generation , 1993, SODA '93.

[8]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2006, Comput. Geom..

[9]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[10]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[11]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[12]  Kai Tang,et al.  Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Franz-Erich Wolter,et al.  Geodesic Voronoi diagrams on parametric surfaces , 1997, Proceedings Computer Graphics International.

[14]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[15]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[16]  Herbert Edelsbrunner,et al.  Triangulating Topological Spaces , 1997, Int. J. Comput. Geom. Appl..

[17]  A. Aleksandrov,et al.  Intrinsic Geometry of Surfaces , 1967 .

[18]  Tamal K. Dey,et al.  Delaunay based shape reconstruction from large data , 2001, Proceedings IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics (Cat. No.01EX520).

[19]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[20]  Sunghee Choi,et al.  A Simple Algorithm for Homeomorphic Surface Reconstruction , 2002, Int. J. Comput. Geom. Appl..

[21]  Shi-Min Hu,et al.  Handling degenerate cases in exact geodesic computation on triangle meshes , 2007, The Visual Computer.

[22]  Hao Zhang,et al.  Surface sampling and the intrinsic Voronoi diagram , 2008, Comput. Graph. Forum.

[23]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[24]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[25]  I. Holopainen Riemannian Geometry , 1927, Nature.

[26]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[27]  Nina Amenta,et al.  One-Pass Delaunay Filtering for Homeomorphic 3D Surface Reconstruction , 1999 .

[28]  Shing-Tung Yau,et al.  Geometric Accuracy Analysis for Discrete Surface Approximation , 2006, GMP.

[29]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[30]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[31]  LiuYong-Jin,et al.  Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011 .