2-Manifold Surface Sampling and Quality Estimation of Reconstructed Meshes
暂无分享,去创建一个
[1] Jack Snoeyink,et al. A One-Step Crust and Skeleton Extraction Algorithm , 2001, Algorithmica.
[2] Kai Tang,et al. Multiresolution free form object modeling with point sampled geometry , 2004, Journal of Computer Science and Technology.
[3] David Letscher,et al. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.
[4] Yong-Jin Liu,et al. Optimized triangle mesh reconstruction from unstructured points , 2003, The Visual Computer.
[5] L. Paul Chew,et al. Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.
[6] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[7] Jim Ruppert,et al. A new and simple algorithm for quality 2-dimensional mesh generation , 1993, SODA '93.
[8] Tamal K. Dey,et al. Provable surface reconstruction from noisy samples , 2006, Comput. Geom..
[9] Marc Alexa,et al. Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..
[10] Joseph S. B. Mitchell,et al. The Discrete Geodesic Problem , 1987, SIAM J. Comput..
[11] Marshall W. Bern,et al. A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.
[12] Kai Tang,et al. Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Franz-Erich Wolter,et al. Geodesic Voronoi diagrams on parametric surfaces , 1997, Proceedings Computer Graphics International.
[14] Patrick M. Knupp,et al. Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..
[15] S. Yau,et al. Global conformal surface parameterization , 2003 .
[16] Herbert Edelsbrunner,et al. Triangulating Topological Spaces , 1997, Int. J. Comput. Geom. Appl..
[17] A. Aleksandrov,et al. Intrinsic Geometry of Surfaces , 1967 .
[18] Tamal K. Dey,et al. Delaunay based shape reconstruction from large data , 2001, Proceedings IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics (Cat. No.01EX520).
[19] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[20] Sunghee Choi,et al. A Simple Algorithm for Homeomorphic Surface Reconstruction , 2002, Int. J. Comput. Geom. Appl..
[21] Shi-Min Hu,et al. Handling degenerate cases in exact geodesic computation on triangle meshes , 2007, The Visual Computer.
[22] Hao Zhang,et al. Surface sampling and the intrinsic Voronoi diagram , 2008, Comput. Graph. Forum.
[23] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[24] Gabriel Taubin,et al. The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.
[25] I. Holopainen. Riemannian Geometry , 1927, Nature.
[26] Jonathan Richard Shewchuk,et al. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.
[27] Nina Amenta,et al. One-Pass Delaunay Filtering for Homeomorphic 3D Surface Reconstruction , 1999 .
[28] Shing-Tung Yau,et al. Geometric Accuracy Analysis for Discrete Surface Approximation , 2006, GMP.
[29] Leonidas J. Guibas,et al. Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.
[30] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1992, VVS.
[31] LiuYong-Jin,et al. Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011 .