Dust polarized emission observations of NGC 6334

[Abridged] Filaments and hubs have received special attention recently thanks to studies showing their role in star formation. While the column density and velocity structures of both filaments and hubs have been studied, their magnetic fields (B-field) are not yet characterized. We aim to understand the role of the B-field in the dynamical evolution of the NGC 6334 hub-filament network. We present new observations of the dust polarized emission at 850$\mu$m towards NGC 6334 obtained with the JCMT/POL-2. We study the distribution and dispersion of the polarized intensity ($PI$), the polarization fraction ($PF$), and the B-field angle ($\theta_{B}$). We derive the power spectrum of the intensity and $\theta_{B}$ along the ridge crest. Our analyses show a complex B-field structure when observed over the whole region ($\sim10$ pc), however, at smaller scales ($\sim1$ pc), $\theta_{B}$ varies coherently along the filaments. The observed power spectrum of $\theta_{B}$ can be well represented with a power law function with a slope $-1.33\pm0.23$, which is $\sim20\%$ shallower than that of $I$. This result is compatible with the properties of simulated filaments and may indicate the processes at play in the formation of filaments. $\theta_{B}$ rotates from being mostly perpendicular to the filament crests to mostly parallel as they merge with the hubs. This variation of $\theta_{B}$ may be tracing local velocity flows of matter in-falling onto the hubs. Our analysis suggests a variation of the energy balance along the crests of these filaments, from magnetically critical/supercritical at their far ends to magnetically subcritical near the hubs. We detect an increase of $PF$ towards the high-column density star cluster-forming hubs that may result from the increase of grain alignment efficiency due to stellar radiation from the newborn stars.

C. W. Lee | W. P. Chen | T. Liu | Lei Zhu | A. Scaife | C. Lee | P. Koch | A. Whitworth | N. Peretto | G. Fuller | T. Onaka | M. Tamura | Sang-Sung Lee | D. Byun | C. Hull | D. Johnstone | P. Bastien | S. Viti | Jongsoo Kim | G. Savini | J. Francesco | B. Matthews | P. Friberg | M. Seta | Y. Lee | J. Kwon | T. Nagata | K. Kawabata | T. Inoue | S. Eyres | S. Falle | M. Griffin | J. Liu | J. Greaves | G. Moriarty-Schieven | T. Hasegawa | D. Ward-Thompson | L. Fissel | J. Hatchell | A. Chrysostomou | J. Fiege | R. Friesen | S. Graves | M. Houde | J. Kirk | J. Richer | P. Andr'e | K. Lacaille | C. Dowell | J. Rawlings | A. Kataoka | R. Rao | M. Rawlings | H. Parsons | L. Qian | K. Qiu | T. Ching | Y. Duan | Jinghua Yuan | D. Eden | A. Rigby | Jianjun Zhou | Xindi Tang | Da-lei Li | G. Park | Miju Kang | Il-Gyo Jeong | H. Nakanishi | Jeong-Eun Lee | Kee-Tae Kim | Hongchi Wang | Zhiwei Chen | Tie Liu | Ji-hyun Kang | S. Inutsuka | F. Kemper | Minho Choi | Sung-ju Kang | H. Yoo | D. Berry | K. Pattle | T. Pyo | F. Nakamura | S. Loo | V. Konyves | D. Arzoumanian | M. Tahani | Guoyin Zhang | R. Rao | Junhao Liu | Xing Lu | Y. Doi | J. Robitaille | Hua-b. Li | Sheng-Yuan Liu | T. Bourke | F. Kirchschlager | I. D. Looze | A. Soam | Gwanjeong Kim | S. Mairs | Shinyoung Kim | K. Pattle | W. Kwon | E. Chung | H. Duan | X. Tang | P. Diep | S. Hayashi | J. Cho | K. Kim | M. Matsumura | Yapeng Zhang | S. Sadavoy | K. Tomisaka | Y. Tsukamoto | Hsi-Wei Yen | N. Ohashi | K. Iwasaki | Y. Shimajiri | Chin-Fei Lee | H. Shinnaga | L. Fanciullo | H. Liu | T. Gledhill | Mi-Ryang Kim | R. Furuya | S. Coud'e | C. Eswaraiah | K. Kim | A. Lyo | B. Retter | L. Zhu | X. Lu | M. Choi | Z. Chen | I. Han | T. Hoang | L. Tram | Hyeseung Lee | Motohide Tamura | C. Law | V. Könyves | H.-R. V. Chen | J. Lee | J. Yuan | J. Kim | S. Kim | D. Li | S.-Y. Liu | T. Zenko | M. Chen | Masato I. N. Kobayashi | D. Johnstone | J. Rawlings | G. Zhang | S. Dai | E. Franzmann | Q. Gu | H. Saito | J. Hwang | T. Kusune | Yong-Hee Lee | J. Kang | J. Zhou | N. B. Ngoc | G. Kim | P. André | Yunhee Choi | G. Moriarty-Schieven | Jia-Wei Wang | H. Wang | M. Kobayashi | H. Li | S. Lai | C.-P. Zhang | Y.-W. Tang | Jungyeon Cho | Y. Zhang | J. Kirk | Chuan-peng Zhang | J. Hwang | K. Kim | S. Kang | M.-R. Kim | Tsuyoshi Inoue | F. Kemper | T. Liu | H. Yun | Y. Choi | Ya-wen Tang | J. Wang | M. Kang | S-S. Lee | H. Lee | J. Xie | Jinjin Xie | Wen-Ping Chen | J. Xie | Ramprasad Rao | M. Griffin | Takayoshi Kusune | Chang Won Lee | H. Chen | D. L. Li | Geumsook Park | Xing Lu

[1]  P. Koch,et al.  Formation of the Hub–Filament System G33.92+0.11: Local Interplay between Gravity, Velocity, and Magnetic Field , 2020, The Astrophysical Journal.

[2]  H. Yamamoto,et al.  Formation of the Musca filament: evidence for asymmetries in the accretion flow due to a cloud–cloud collision , 2020, Astronomy & Astrophysics.

[3]  P. Diep,et al.  Grain Alignment and Disruption by Radiative Torques in Dense Molecular Clouds and Implication for Polarization Holes , 2020, 2010.07742.

[4]  P. Hennebelle,et al.  A statistical analysis of dust polarization properties in ALMA observations of Class 0 protostellar cores , 2020, Astronomy & Astrophysics.

[5]  S. Reissl,et al.  Magnetized filamentary gas flows feeding the young embedded cluster in Serpens South , 2020, Nature Astronomy.

[6]  P. Palmeirim,et al.  Unifying low- and high-mass star formation through density-amplified hubs of filaments , 2020, Astronomy & Astrophysics.

[7]  Lei Zhu,et al.  The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333 , 2020, The Astrophysical Journal.

[8]  N. Peretto,et al.  The role of Galactic H II regions in the formation of filaments , 2020, Astronomy & Astrophysics.

[9]  J. D. Soler,et al.  Could bow-shaped magnetic morphologies surround filamentary molecular clouds? , 2019, Astronomy & Astrophysics.

[10]  H. Liu,et al.  Physical properties of the star-forming clusters in NGC 6334 , 2019, Astronomy & Astrophysics.

[11]  Jungyeon Cho,et al.  Physical Model of Dust Polarization by Radiative Torque Alignment and Disruption and Implications for Grain Internal Structures , 2019, The Astrophysical Journal.

[12]  P. Andre',et al.  Properties of the dense core population in Orion B as seen by the Herschel Gould Belt survey , 2019, Astronomy & Astrophysics.

[13]  P. Palmeirim,et al.  Probing fragmentation and velocity sub-structure in the massive NGC 6334 filament with ALMA , 2019, Astronomy & Astrophysics.

[14]  A. Ginsburg,et al.  KFPA Examinations of Young STellar Object Natal Environments (KEYSTONE): Hierarchical Ammonia Structures in Galactic Giant Molecular Clouds , 2019, The Astrophysical Journal.

[15]  P. Andr'e,et al.  The role of molecular filaments in the origin of the prestellar core mass function and stellar initial mass function , 2019, Astronomy & Astrophysics.

[16]  T. Onaka,et al.  JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model , 2019, The Astrophysical Journal.

[17]  S. Inutsuka,et al.  An Origin for the Angular Momentum of Molecular Cloud Cores: A Prediction from Filament Fragmentation , 2019, The Astrophysical Journal.

[18]  Lei Zhu,et al.  The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region , 2019, The Astrophysical Journal.

[19]  H. Liu,et al.  Filamentary Accretion Flows in the Infrared Dark Cloud G14.225–0.506 Revealed by ALMA , 2019, The Astrophysical Journal.

[20]  Shu-ichiro Inutsuka,et al.  The Role of Magnetic Field in Molecular Cloud Formation and Evolution , 2019, Front. Astron. Space Sci..

[21]  E. Pascale,et al.  JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146 , 2018, The Astrophysical Journal.

[22]  L. Tram,et al.  Rotational disruption of dust grains by radiative torques in strong radiation fields , 2018, Nature Astronomy.

[23]  L. Tram,et al.  A New Mechanism of Dust Destruction by Massive Stars, Supernovae, and Kilonovae: Rotational Disruption by Radiative Torques , 2018, 1810.05557.

[24]  P. Andre',et al.  Characterizing the properties of nearby molecular filaments observed with Herschel , 2018, Astronomy & Astrophysics.

[25]  J. Rizzo,et al.  ALMA imaging of the nascent planetary nebula IRAS 15103–5754 , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  K. Tachihara,et al.  Molecular filament formation and filament–cloud interaction: Hints from Nobeyama 45 m telescope observations , 2018, Publications of the Astronomical Society of Japan.

[27]  Lei Zhu,et al.  Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements , 2018, The Astrophysical Journal.

[28]  Lei Zhu,et al.  A First Look at BISTRO Observations of the ρ Oph-A core , 2018, 1804.09313.

[29]  M. Tahani,et al.  Helical magnetic fields in molecular clouds? , 2018, Astronomy & Astrophysics.

[30]  P. Koch,et al.  Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA , 2018, 1801.08264.

[31]  N. Peretto,et al.  Gravity drives the evolution of infrared dark hubs: JVLA observations of SDC13 , 2018, 1801.07253.

[32]  E. Vázquez-Semadeni,et al.  The magnetic field structure in molecular cloud filaments , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  J. Alves,et al.  An ALMA study of the Orion Integral Filament: I. Evidence for narrow fibers in a massive cloud , 2018, 1801.01500.

[34]  Guangxing Li,et al.  Quantifying the interplay between gravity and magnetic field in molecular clouds – a possible multiscale energy equipartition in NGC 6334 , 2017, 1711.02417.

[35]  P. Koch,et al.  Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V , 2017, 1706.03534.

[36]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[37]  S. Bontemps,et al.  The earliest phases of high-mass star formation, as seen in NGC 6334 by Herschel-HOBYS , 2017, 1703.09839.

[38]  P. Andre',et al.  Filamentary structure and magnetic field orientation in Musca , 2016 .

[39]  P. Hennebelle,et al.  Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization , 2016, 1605.09371.

[40]  E. Doumayrou,et al.  Characterizing filaments in regions of high-mass star formation: High-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTeMiS , 2016, 1605.07434.

[41]  A. Lazarian,et al.  A UNIFIED MODEL OF GRAIN ALIGNMENT: RADIATIVE ALIGNMENT OF INTERSTELLAR GRAINS WITH MAGNETIC INCLUSIONS , 2016, 1605.02828.

[42]  C. A. Oxborrow,et al.  Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap , 2016, 1604.01029.

[43]  T. Henning,et al.  Resolving the fragmentation of high line-mass filaments with ALMA: the integral shaped filament in Orion A , 2016, 1603.05688.

[44]  Manash R. Samal,et al.  NGC 6334 and NGC 6357: Hα kinematics and the nature of the H II regions , 2016 .

[45]  A. Lazarian,et al.  Grain Alignment: Role of Radiative Torques and Paramagnetic Relaxation , 2015, 1511.03696.

[46]  N. Peretto,et al.  Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function , 2015, 1509.01819.

[47]  John E. Vaillancourt,et al.  Interstellar Dust Grain Alignment , 2015 .

[48]  N. Peretto,et al.  A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey , 2015, 1507.05926.

[49]  E. Rosolowsky,et al.  Filament Identification through Mathematical Morphology , 2015, 1507.02289.

[50]  C. Hull,et al.  The 1.3mm Full-Stokes Polarization System at CARMA , 2015, 1506.04771.

[51]  A. Ginsburg,et al.  Large-scale filaments associated with Milky Way spiral arms , 2015, 1504.00647.

[52]  P. K. Leung,et al.  Self-similar fragmentation regulated by magnetic fields in a region forming massive stars , 2015, Nature.

[53]  G. W. Pratt,et al.  Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.

[54]  R. B. Barreiro,et al.  Planck intermediate results - XXXIV. The magnetic field structure in the Rosette Nebula , 2015, 1501.00922.

[55]  M. Tafalla,et al.  Chains of dense cores in the Taurus L1495/B213 complex , 2014, 1412.1083.

[56]  R. B. Barreiro,et al.  Planck intermediate results: XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps , 2014, 1411.2271.

[57]  P. Bastien,et al.  GRAIN ALIGNMENT IN STARLESS CORES , 2014, 1411.1031.

[58]  G. W. Pratt,et al.  Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust , 2014, 1409.6728.

[59]  P. Koch,et al.  MAGNETIC FIELDS AND MASSIVE STAR FORMATION , 2014, Proceedings of the International Astronomical Union.

[60]  L. Montier,et al.  Polarization measurements analysis II. Best estimators of polarization fraction and angle , 2014, 1407.0178.

[61]  G. W. Pratt,et al.  Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust , 2014, 1405.0871.

[62]  M. Honma,et al.  ASTROMETRY AND SPATIO-KINEMATICS OF H2O MASERS IN THE MASSIVE STAR-FORMING REGION NGC 6334I(NORTH) WITH VERA , 2014 .

[63]  A. Lazarian,et al.  Grain alignment by radiative torques in special conditions and implications , 2014, 1407.8228.

[64]  S. Plaszczynski,et al.  A novel estimator of the polarization amplitude from normally distributed Stokes parameters , 2013, 1312.0437.

[65]  N. Peretto,et al.  SDC13 infrared dark clouds: longitudinally collapsing filaments? , 2013, 1311.0203.

[66]  K. Tomisaka MAGNETOHYDROSTATIC EQUILIBRIUM STRUCTURE AND MASS OF FILAMENTARY ISOTHERMAL CLOUD THREADED BY LATERAL MAGNETIC FIELD , 2013, 1402.3033.

[67]  N. Peretto,et al.  Global collapse of molecular clouds as a formation mechanism for the most massive stars , 2013, 1307.2590.

[68]  N. Peretto,et al.  The Herschel view of the massive star-forming region NGC 6334 , 2013 .

[69]  P. Schilke,et al.  The global velocity field of the filament in NGC 6334 , 2013 .

[70]  Tsuyoshi Inoue,et al.  FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD–CLOUD COLLISION , 2013, 1305.4655.

[71]  S. Falle,et al.  The responses of magnetically subcritical cores to shocks , 2013, 1305.1716.

[72]  Canadian Institute for Theoretical Astrophysics,et al.  First results from the Herschel Gould Belt Survey in Taurus , 2013, 1304.4098.

[73]  N. Peretto,et al.  Formation and evolution of interstellar filaments: hints from velocity dispersion measurements , 2013, 1303.3024.

[74]  J. Kauffmann,et al.  Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region , 2013, 1303.2118.

[75]  C. B. Netterfield,et al.  AN IMPRINT OF MOLECULAR CLOUD MAGNETIZATION IN THE MORPHOLOGY OF THE DUST POLARIZED EMISSION , 2013, 1303.1830.

[76]  A. Duarte-Cabral,et al.  THE HERSCHEL AND JCMT GOULD BELT SURVEYS: CONSTRAINING DUST PROPERTIES IN THE PERSEUS B1 CLUMP WITH PACS, SPIRE, AND SCUBA-2 , 2013, 1303.1529.

[77]  G. Wilson,et al.  FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER , 2013, 1301.6792.

[78]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[79]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[80]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[81]  B. Andersson Interstellar Grain Alignment - Observational Status , 2012, 1208.4393.

[82]  N. Voshchinnikov Interstellar extinction and interstellar polarization: old and new models , 2012, 1206.4090.

[83]  M. Sauvage,et al.  The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X , 2012, 1206.1243.

[84]  H. Chen,et al.  THE MAGNETIZED ENVIRONMENT OF THE W3(H2O) PROTOSTARS , 2012, 1204.3849.

[85]  J. Fischera,et al.  Physical properties of interstellar filaments , 2012, 1204.3608.

[86]  Heidelberg,et al.  Cluster-formation in the Rosette molecular cloud at the junctions of filaments , 2012, 1203.6472.

[87]  K. Menten,et al.  APEX CO (9–8) MAPPING OF AN EXTREMELY HIGH VELOCITY AND JET-LIKE OUTFLOW IN A HIGH-MASS STAR-FORMING REGION , 2011, 1111.2776.

[88]  Annie Zavagno,et al.  Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites , 2011, 1108.0941.

[89]  F. Wyrowski,et al.  MALT90: The Millimetre Astronomy Legacy Team 90 GHz Survey , 2011, Publications of the Astronomical Society of Australia.

[90]  M. Tamura,et al.  NEAR-INFRARED-IMAGING POLARIMETRY TOWARD SERPENS SOUTH: REVEALING THE IMPORTANCE OF THE MAGNETIC FIELD , 2011, 1104.2977.

[91]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[92]  C. Pichon,et al.  The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.

[93]  M. Sauvage,et al.  Clouds, filaments, and protostars: TheHerschel Hi-GAL Milky Way , 2010, 1005.3317.

[94]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[95]  Stanford,et al.  Dynamic star formation in the massive DR21 filament , 2010, 1003.4198.

[96]  Masanori Iye,et al.  National Astronomical Observatory of Japan , 2009, 0908.0369.

[97]  P. Myers FILAMENTARY STRUCTURE OF STAR-FORMING COMPLEXES , 2009, 0906.2005.

[98]  P. Koch,et al.  EVOLUTION OF MAGNETIC FIELDS IN HIGH MASS STAR FORMATION: SUBMILLIMETER ARRAY DUST POLARIZATION IMAGE OF THE ULTRACOMPACT H ii REGION G5.89−0.39 , 2008, 0812.3444.

[99]  Martin G. Cohen,et al.  THE DISTRIBUTION AND PROPERTIES OF COLD DUST IN NGC 6334 , 2008 .

[100]  Bonn,et al.  MAMBO Mapping Of Spitzer c2d Small Clouds And Cores , 2008, 0805.4205.

[101]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[102]  R. Crutcher Magnetic fields in molecular clouds , 2007 .

[103]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[104]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[105]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[106]  S. Bontemps,et al.  Massive Clumps in the NGC 6334 Star-forming Region , 2007, 0706.3035.

[107]  C. Young,et al.  Submillimeter Common-User Bolometer Array Mapping of Spitzer c2d Small Clouds and Cores , 2006 .

[108]  John E. Vaillancourt,et al.  Placing Confidence Limits on Polarization Measurements , 2006, astro-ph/0603110.

[109]  D. Chuss,et al.  Results of SPARO 2003: Mapping Magnetic Fields in Giant Molecular Clouds , 2006, astro-ph/0602455.

[110]  A. Lazarian,et al.  Grain Alignment by Radiation in Dark Clouds and Cores , 2005, astro-ph/0505571.

[111]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[112]  S. Inutsuka The Mass Function of Molecular Cloud Cores , 2001 .

[113]  M. Norman,et al.  Magnetic Field Diagnostics Based on Far-Infrared Polarimetry: Tests Using Numerical Simulations , 2001, astro-ph/0103286.

[114]  P. Gerakines,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[115]  Jessie L. Dotson,et al.  A Primer on Far‐Infrared Polarimetry , 2000 .

[116]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[117]  W. Danchi,et al.  Star formation in NGC 6334 I and I(N) , 2000 .

[118]  J. Fiege,et al.  Helical fields and filamentary molecular clouds — I , 1999, astro-ph/9901096.

[119]  Philip C. Myers,et al.  On the Efficiency of Grain Alignment in Dark Clouds , 1997, astro-ph/9706163.

[120]  S. Miyama,et al.  A Production Mechanism for Clusters of Dense Cores , 1997 .

[121]  K. Kraemer,et al.  Molecular Gas in the NGC 6334 Star Formation Region , 1996 .

[122]  J. Dickey,et al.  Infrared polarimetry and the galactic magnetic field. II: Improved models , 1992 .

[123]  B. Draine,et al.  Infrared extinction and polarization due to partially aligned spheroidal grains: Models for the dust toward the BN object , 1985 .

[124]  L. Spitzer,et al.  Magnetic Alignment of Interstellar Grains , 1967 .

[125]  J. Ostriker The Equilibrium of Polytropic and Isothermal Cylinders. , 1964 .

[126]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[127]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[128]  M. Sauvage,et al.  Initial highlights of the HOBYS key program , the Herschel imaging survey of OB young stellar objects Journal Item , 2018 .

[129]  Astronomy Astrophysics , 2003 .

[130]  M. Wood People's Republic of China. , 1979, The Alumni magazine.

[131]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[132]  N. Peretto,et al.  Astronomy Astrophysics Letter to the Editor Characterizing interstellar filaments with Herschel in IC 5146 ⋆,⋆⋆ , 2022 .