Development of an efficient and secure mobile communication system with new future directions

This chapter presents performance of a new technique for constructing Quasi-Cyclic Low-Density ParityCheck (QC-LDPC) encrypted codes based on a row division method. The new QC-LDPC encrypted codes are flexible in terms of large girth, multiple code rates, and large block lengths. In the proposed algorithm, the restructuring of the interconnections is developed by splitting the rows into subrows. This row division reduces the load on the processing node and ultimately reduces the hardware complexity. In this method of encrypted code construction, rows are used to form a distance graph. They are then transformed to a parity-check matrix in order to acquire the desired girth. In this work, matrices are divided into small sub-matrices, which result in improved decoding performance and reduce waiting time of the messages to be updated. Matrix sub-division increases the number of sub-matrices to be managed and memory requirement. Moreover, Prototype architecture of the LDPC codes has been implemented by writing Hardware Description Language (VHDL) code and targeted to a Xilinx Spartan-3E XC3S500E FPGA chip.

[1]  Weile Zhu,et al.  Design of Quasi‐Cyclic Low‐Density Parity Check Codes with Large Girth , 2007 .

[2]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[3]  Xiao-Yu Hu,et al.  Irregular progressive edge-growth (PEG) Tanner graphs , 2002, Proceedings IEEE International Symposium on Information Theory,.

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  Jen-Fa Huang,et al.  Construction of quasi-cyclic LDPC codes from quadratic congruences , 2008, IEEE Communications Letters.

[6]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[7]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[8]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[9]  Othman Sidek,et al.  Row Division Method to Generate QC-LDPC Codes , 2009, 2009 Fifth Advanced International Conference on Telecommunications.

[10]  William E. Ryan,et al.  Quasi-cyclic generalized ldpc codes with low error floors , 2007, IEEE Transactions on Communications.

[11]  Hong Liu,et al.  Iterative frequency-domain channel estimation and equalization for single-carrier transmissions without cyclic-prefix , 2008, IEEE Trans. Wirel. Commun..

[12]  Xiaohu You,et al.  A necessary and sufficient condition for determining the girth of quasi-cyclic LDPC codes , 2008, IEEE Transactions on Communications.

[13]  S. P. Balakannan,et al.  Low complexity encoding of LDPC codes for high-rate and high-speed communication , 2008, 2008 First International Conference on Distributed Framework and Applications.

[14]  Dale E. Hocevar LDPC code construction with flexible hardware implementation , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[15]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[16]  Jee-Youl Ryu,et al.  A New Automatic Compensation Network for System‐on‐Chip Transceivers , 2007 .

[17]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[18]  Olgica Milenkovic,et al.  Analysis of the cycle-structure of LDPC codes based on Latin squares , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[19]  T. Ohtsuki,et al.  Performance analysis of BP-based algorithms for irregular low-density parity-check codes on fast Rayleigh fading channel , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[20]  Richard Vidgen,et al.  Agile and Lean Service-Oriented Development: Foundations, Theory, and Practice , 2012 .

[21]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[22]  Evangelos Eleftheriou,et al.  Rate-compatible low-density parity-check codes for digital subscriber lines , 2002, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[23]  Zhixing Yang,et al.  A fast and efficient encoding structure for QC-LDPC codes , 2008, 2008 International Conference on Communications, Circuits and Systems.

[24]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[25]  Nenad Miladinovic,et al.  Systematic recursive construction of LDPC codes , 2004, IEEE Communications Letters.

[26]  Rudolf Tanner,et al.  WCDMA - Requirements and Practical Design: Tanner/WCDMA , 2005 .

[27]  R. M. Tanner,et al.  A Class of Group-Structured LDPC Codes , 2001 .

[28]  Sunghwan Kim,et al.  On the girth of tanner (3, 5) quasi-cyclic LDPC codes , 2006, IEEE Transactions on Information Theory.

[29]  T. Ohtsuki,et al.  Regular low-density parity-check (LDPC) code with normalized and UMP BP-based algorithms on fast Rayleigh fading channel , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[30]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[31]  Joanna Leng,et al.  Handbook of Research on Computational Science and Engineering: Theory and Practice , 2011 .

[32]  Daniel A. Spielman,et al.  Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.

[33]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[34]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[35]  Jonathan E. Butner,et al.  Interest and Performance When Learning Online: Providing Utility Value Information can be Important for Both Novice and Experienced Students , 2011, Int. J. Cyber Behav. Psychol. Learn..

[36]  Othman Sidek,et al.  An Efficient Encoding-Decoding of Large Girth LDPC Codes Based on Quasi-Cyclic , 2009 .

[37]  Toly Chen,et al.  Applying a Fuzzy and Neural Approach for Forecasting the Foreign Exchange Rate , 2011, Int. J. Fuzzy Syst. Appl..

[38]  Othman Sidek,et al.  Lower Computation and Storage Complexity of QC-LDPC Codes in Rayleigh Fading Channel , 2009 .

[39]  Li Zhang,et al.  Non-binary LDPC codes vs. Reed-Solomon codes , 2008, 2008 Information Theory and Applications Workshop.

[40]  Dale E. Hocevar Efficient encoding for a family of quasi-cyclic LDPC codes , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[41]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[42]  Othman Sidek,et al.  A new Quasi-Cyclic low density parity check codes , 2009, 2009 IEEE Symposium on Industrial Electronics & Applications.