Maria's Family: Physical Structure and Possible Implications for the Origin of Giant NEAs

Abstract An extensive analysis of the Maria family is presented. A reconstruction of the original ejection velocity field of the fragments suggests that a substantial number of relatively large fragments may have been injected into the neighboring 3/1 mean motion resonance with Jupiter. This also agrees with an analysis of the size distribution of the family, suggesting that about 10 objects in the size range 15–30 km have probably been lost. As a consequence, Maria's family can be seen as one of the most promising candidates for the source of the “giant” near-Earth asteroids 433 Eros and 1036 Ganymed. This is also supported by an extensive spectroscopic survey of the family members in the spectral range 5000–10000 A. The spectra obtained are very similar and are consistent with the known spectra of Eros and Ganymed.

[1]  K. Holsapple,et al.  Laboratory simulations of large scale fragmentation events , 1991 .

[2]  Kiyotsugu Hirayama,et al.  Families of Asteroids. Second Paper , 2022 .

[3]  Akiko M. Nakamura,et al.  Catastrophic disruption experiments: recent results , 1994 .

[4]  Richard P. Binzel,et al.  Asteroid collisional history - Effects on sizes and spins , 1989 .

[5]  A. Verlicchi,et al.  The interpretation of laboratory experiments in the framework of an improved semi-empirical model , 1994 .

[6]  A. Harris,et al.  Asteroids, comets, meteors 1991 , 1992 .

[7]  P. Farinella,et al.  Meteorite Delivery and Transport , 1994 .

[8]  Andrea Milani,et al.  Asteroid Proper Elements and the Dynamical Structure of the Asteroid Main Belt , 1994 .

[9]  J. Bell,et al.  Eos, Koronis, and Maria Family Asteroids: Infrared (JHK) Photometry , 1995 .

[10]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[11]  Donald R. Davis,et al.  From asteroid clusters to families: A proposal for a new nomenclature , 1992 .

[12]  A. Verlicchi,et al.  An Improved Semi-Empirical Model of Catastrophic Impact Processes I-Theory and Laboratory Experiments , 1996 .

[13]  Francesco Marzari,et al.  Collisional Evolution of Asteroid Families , 1995 .

[14]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[15]  Andrea Milani,et al.  Asteroid proper elements and secular resonances , 1992 .

[16]  P. Farinella,et al.  The orbital evolution of the asteroid Eros and implications for collision with the Earth , 1996, Nature.

[17]  Jack Wisdom,et al.  Meteorites may follow a chaotic route to Earth , 1985, Nature.

[18]  F. Marzari,et al.  Statistics of close approaches between asteroids and planets: Project SPACEGUARD , 1990 .

[19]  M. Gaffey,et al.  Meteoritic parent bodies: nature, number, size and relation to present-day asteroids. , 1989 .

[20]  G. Hahn,et al.  Dynamics of planet-crossing asteroids: Classes of orbital behavior: Project SPACEGUARD , 1989 .

[21]  P. Farinella,et al.  Surface Properties of (6) Hebe: A Possible Parent Body of Ordinary Chondrites , 1997 .

[22]  Giovanni B. Valsecchi,et al.  Asteroids falling into the Sun , 1994, Nature.

[23]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[24]  J. Wisdom,et al.  Chaotic behavior and the origin of the 3/1 Kirkwood gap , 1983 .

[25]  Richard P. Binzel,et al.  Asteroid Spectroscopy and Mineralogy , 1994 .

[26]  Alberto Cellino,et al.  Interlopers within Asteroid Families , 1995 .

[27]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[28]  Alberto Cellino,et al.  Asteroid Families: Search of a 12,487-Asteroid Sample Using Two Different Clustering Techniques , 1995 .

[29]  Alessandro Morbidelli,et al.  The Secular Resonances in the Solar System , 1994 .

[30]  P. Farinella,et al.  Delivery of meteorites through the nu 6 secular resonance , 1994 .

[31]  W. Benz,et al.  Numerical simulations of catastrophic disruption: Recent results , 1994 .

[32]  M. Gaffey,et al.  Reflectance spectra for 277 asteroids , 1979 .

[33]  P. Farinella,et al.  The Injection of Asteroid Fragments into Resonances , 1993 .

[34]  Alessandro Morbidelli,et al.  Asteroid Families Close to Mean Motion Resonances: Dynamical Effects and Physical Implications , 1995 .

[35]  Paolo Farinella,et al.  A semiempirical model of catastrophic breakup processes , 1989 .

[36]  P. Farinella,et al.  Meteorites from the asteroid 6 Hebe , 1993 .

[37]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[38]  Edward F. Tedesco,et al.  Asteroid magnitudes, UBV colors, and IRAS albedos and diameters , 1989 .

[39]  Akira Fujiwara,et al.  Experimental study on the velocity of fragments in collisional breakup , 1980 .

[40]  S. Murchie,et al.  Spectral properties and rotational spectral heterogeneity of 433 Eros , 1996 .

[41]  Paolo Farinella,et al.  Asteroid collisional evolution: results from current scaling algorithms , 1994 .

[42]  Alberto Cellino,et al.  Reconstructing the Original Ejection Velocity Fields of Asteroid Families , 1996 .

[43]  M. Yoshikawa Motions of asteroids at the Kirkwood gaps: I. On the 3:1 resonance with Jupiter , 1990 .

[44]  C. Chapman,et al.  Spectroscopic evidence for undifferentiated S-type asteroids , 1982 .

[45]  Alberto Cellino,et al.  Asteroids, Comets, Meteors 1993 , 1994 .

[46]  A. Cellino,et al.  Asteroid families: Recent results and present scenario , 1992 .

[47]  J. G. Williams,et al.  Identification of asteroid dynamical families , 1989 .

[48]  Andrea Milani,et al.  Secular perturbation theory and computation of asteroid proper elements , 1990 .