Microstructure and its effect on magnetic and magnetocaloric properties of the Co50Gd50-xFex glassy ribbons

[1]  L. Xia,et al.  Achieving high adiabatic temperature change at room temperature in a Gd48Co50Fe2 amorphous alloy , 2019, Journal of Alloys and Compounds.

[2]  L. Xia,et al.  Compositional dependence of magnetic and magnetocaloric properties of the Gd-Ni binary amorphous alloys , 2019, Journal of Non-Crystalline Solids.

[3]  L. Xia,et al.  Phase separation and its effect on the magnetic entropy change profile in an amorphous Gd 48 Co 50 Nb 2 alloy , 2018, Journal of Non-Crystalline Solids.

[4]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[5]  L. Xia,et al.  Achieving a table-like magnetic entropy change across the ice point of water with tailorable temperature range in Gd-Co-based amorphous hybrids , 2017 .

[6]  L. Xia,et al.  Large adiabatic temperature rise above the water ice point of a minor Fe substituted Gd 50 Co 50 amorphous alloy , 2017 .

[7]  L. Xia,et al.  Improved magneto-caloric effect of the Gd 50 Co 50 metallic glass by minor Si addition , 2017 .

[8]  X. Shen,et al.  Thermal stability, magnetic properties and large refrigerant capacity of ternary Gd55Co35M10 (M = Mn, Fe and Ni) amorphous alloys , 2016 .

[9]  L. Xia,et al.  Near room temperature magneto-caloric effect of a Gd48Co52 amorphous alloy , 2016 .

[10]  L. Xia,et al.  Achieving better magneto-caloric effect near room temperature in amorphous Gd50Co50 alloy by minor Zn addition , 2016 .

[11]  H. Bai,et al.  Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon , 2016 .

[12]  D. Zeng,et al.  Table-like magnetocaloric effect of Fe88−xNdxCr8B4 composite materials , 2015 .

[13]  S. H. Chen,et al.  Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water , 2015 .

[14]  Y. Dong,et al.  Large magnetic entropy change and adiabatic temperature rise of a Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass , 2014 .

[15]  P. Gorria,et al.  Searching the conditions for a table-like shape of the magnetic entropy in magneto-caloric materials , 2013 .

[16]  J. Araújo,et al.  On the Curie temperature dependency of the magnetocaloric effect , 2012 .

[17]  S. Gorsse,et al.  Tunable magnetocaloric effect in Gd-based glassy ribbons , 2011 .

[18]  K. Chan,et al.  Enhanced glass forming ability and refrigerant capacity of a Gd55Ni22Mn3Al20 bulk metallic glass , 2011 .

[19]  H. Fu,et al.  Magnetic and magnetocaloric properties of ternary Gd–Co–Al bulk metallic glasses , 2011 .

[20]  W. Wang,et al.  Magnetocaloric effect in rare earth-based bulk metallic glasses , 2010 .

[21]  Y. B. Li,et al.  Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses , 2008 .

[22]  X. Hui,et al.  Thermal stability and magnetocaloric properties of GdDyAlCo bulk metallic glasses , 2008 .

[23]  M. Stoica,et al.  Refrigerant capacity of FeCrMoCuGaPCB amorphous alloys , 2006 .

[24]  V. Franco,et al.  The influence of Co addition on the magnetocaloric effect of Nanoperm-type amorphous alloys , 2006 .

[25]  Dongshan Zhao,et al.  Primary crystallization and hard magnetic properties of Nd60Al10Fe20Co10 metallic glasses , 2003 .

[26]  Weihua Wang,et al.  Microstructure and Magnetic Properties of Nd60Al10Fe20Co10 Glass-forming Alloy , 2003 .

[27]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[28]  A. Takeuchi,et al.  Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability , 2001 .

[29]  D. Turnbull Under what conditions can a glass be formed , 1969 .