A Comparison of VAR and Neural Networks with Genetic Algorithm in Forecasting Price of Oil

[1]  Günter Weinert Global economy in the doldrums , 2002 .

[2]  Claudio Morana,et al.  A semiparametric approach to short-term oil price forecasting , 2001 .

[3]  Nicholas Sarantis,et al.  The ERM Effect, Conflict and Inflation in the European Union , 2000 .

[4]  A. Jaffe,et al.  The Shocks of a World of Cheap Oil , 2000 .

[5]  John C. B. Cooper Artificial neural networks versus multivariate statistics: An application from economics , 1999 .

[6]  R. Pindyck The long-run evolution of energy prices , 1999 .

[7]  Halbert White,et al.  Improved Rates and Asymptotic Normality for Nonparametric Neural Network Estimators , 1999, IEEE Trans. Inf. Theory.

[8]  Saeed Moshiri,et al.  Static, Dynamic, and Hybrid Neural Networks in Forecasting Inflation , 1998 .

[9]  Michael Y. Hu,et al.  Neural network forecasting of the British pound/US dol-lar exchange rate , 1998 .

[10]  K. Matsui Global Demand Growth of Power Generation, Input Choices and Supply Security , 1998 .

[11]  J. McMenamin,et al.  Short Term Energy Forecasting with Neural Networks , 1998 .

[12]  Xiaotong Shen,et al.  Sieve extremum estimates for weakly dependent data , 1998 .

[13]  Bruce Curry,et al.  NEURAL NETWORKS AND BUSINESS FORECASTING: AN APPLICATION TO CROSS‐SECTIONAL AUDIT FEE DATA , 1998 .

[14]  H. R. Linden FLAWS SEEN IN RESOURCE MODELS BEHIND CRISIS FORECASTS FOR OIL SUPPLY, PRICE , 1998 .

[15]  K. Finchem NEURAL NETWORK TECHNOLOGY MOVES TOWARD MAINSTREAM CONTROL USE , 1998 .

[16]  Xiaotong Shen,et al.  On methods of sieves and penalization , 1997 .

[17]  Robert W. Rich,et al.  Oil and the Macroeconomy: A Markov State-Switching Approach , 1997 .

[18]  Victor R. Prybutok,et al.  Predicting Airline Passenger Volume , 1997 .

[19]  Alice E. Smith,et al.  COST ESTIMATION PREDICTIVE MODELING: REGRESSION VERSUS NEURAL NETWORK , 1997 .

[20]  James V. Hansen,et al.  Learning experiments with genetic optimization of a generalized regression neural network , 1996, Decis. Support Syst..

[21]  James D. Hamilton This is what happened to the oil price-macroeconomy relationship , 1996 .

[22]  M. Hooker,et al.  What happened to the oil price-macroeconomy relationship? , 1996 .

[23]  Y. Makovoz Random Approximants and Neural Networks , 1996 .

[24]  Chin Kuo,et al.  Neural Networks vs. Conventional Methods of Forecasting , 1996 .

[25]  James W. Denton,et al.  How Good Are Neural Networks for Causal Forecasting , 1995 .

[26]  D. M. Titterington,et al.  Neural Networks: A Review from a Statistical Perspective , 1994 .

[27]  G. Grudnitski,et al.  Forecasting S&P and gold futures prices: An application of neural networks , 1993 .

[28]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[29]  Brian D. Ripley,et al.  Statistical aspects of neural networks , 1993 .

[30]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[31]  A. Barron Approximation and Estimation Bounds for Artificial Neural Networks , 1991, COLT '91.

[32]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[33]  Michail Zak,et al.  Terminal attractors in neural networks , 1989, Neural Networks.

[34]  M. Gisser,et al.  Crude Oil and the Macroeconomy: Tests of Some Popular Notions: A Note. , 1986 .

[35]  S. Geman,et al.  Nonparametric Maximum Likelihood Estimation by the Method of Sieves , 1982 .