Federated learning enables big data for rare cancer boundary detection

Bjoern H Menze | Amber L. Simpson | James F. Gimpel | Francis R. Loayza | Raymond Y Huang | Jacob J. Peoples | Joaquim M Farinhas | Sung Soo Ahn | Micah J. Sheller | Ahmed T. A. Alafandi | Craig K. Jones | Klaus H. Maier-Hein | S. Velastín | Q. Dou | P. Heng | M. Modat | Ben Glocker | A. Venkataraman | R. Meier | J. Slotboom | R. Wiest | M. Reyes | L. Chambless | S. Bakas | K. Kamnitsas | J. Buatti | J. Pichler | Y. Lui | R. Jeraj | C. Davatzikos | T. Cloughesy | M. Bilello | A. Falcão | J. Maldjian | B. Landman | P. Matula | M. Kozubek | Joonsan Lee | J. Rudie | H. Sair | Yading Yuan | C. Price | J. Trenkler | A. Sloan | B. Wagner | Jong-Hee Chang | J. Barnholtz-Sloan | M. Boss | T. Kurç | F. Moraes | A. Srinivasan | E. Zacharaki | M. Ingalhalikar | E. Calabrese | A. Dicker | S. Niclou | M. Vogelbaum | L. Poisson | J. Villanueva-Meyer | A. Flanders | A. Vincent | M. Smits | M. Muzi | H. Kim | J. Saltz | M. Hamghalam | M. Lepage | P. Prasanna | V. Vadmal | P. French | K. Moustakas | D. Ormond | D. Kardamakis | M. Vallières | Jihye Yun | G. Shukla | A. Mahajan | Krithika Bhuvaneshwar | S. Currie | Sarthak Pati | J. Teuwen | S. Mohan | B. Ellingson | G. Alexander | J. Palmer | B. Wiestler | P. Tiwari | R. Colen | C. Kalogeropoulou | Arvind Rao | A. Hagiwara | F. Sahm | Jason Martin | D. Menotti | Hongwei Li | T. Weiss | R. McKinley | M. Bendszus | C. Badve | M. Pinho | Lisa Cimino | S. Adabi | S. Meckel | C. Yogananda | M. Wijnenga | H. Dubbink | R. Gahrmann | F. Incekara | G. Kapsas | J. Schouten | A. Hau | M. Bent | Aikaterini Kotrotsou | Seung-Koo Lee | Ji Eun Park | M. Agzarian | Yusung Kim | Stephen Seung-Yeob Baek | D. Fortin | Minh-Son To | Kaiwen Xu | G. A. Reina | R. Bareja | G. Brugnara | Ricky Hu | Enrique Peláez | P. Radojewski | Ujjwal Baid | Brandon Edwards | Patrick Foley | Alexey Gruzdev | Deepthi Karkada | C. Sako | S. Ghodasara | Philipp Vollmuth | C. J. Preetha | Wolfgang Wick | S. Cha | Manali Jadhav | Umang Pandey | J. Saini | J. Garrett | Matthew H Larson | R. Frood | K. Fatania | Ken Chang | C. Quintero | J. Capellades | J. Puig | Georg Necker | Andreas Haunschmidt | Spencer Liem | Joseph Lombardo | Meirui Jiang | T. Y. So | Cheng Chen | F. Lux | Jan Mich'alek | Milovs Kevrkovsk'y | Tereza Kopvrivov'a | Marek Dost'al | V'aclav Vyb'ihal | J. R. Mitchell | J. Farinhas | J. Holcomb | Catalina Raymond | T. Oughourlian | Sargam Bhardwaj | Chee Chong | S. B. Martins | Bernardo Teixeira | Flávia Sprenger | D. Lucio | Daniel Marcus | F. Kofler | I. Ezhov | M. Metz | Rajan Jain | Matthew C. H. Lee | D. Murcia | Eric Fu | Rourke Haas | J. Thompson | K. Waite | Linmin Pei | M. Ak | J. Bapuraj | Ota Yoshiaki | T. Moritani | Sevcan Turk | Snehal Prabhudesai | Fanny Mor'on | J. Mandel | Luke Dixon | Matthew Williams | P. Zampakis | V. Panagiotopoulos | P. Tsiganos | Sotiris Alexiou | Ilias Haliassos | Bing Luo | Jonathan Chen | Neeraj Kumar | S. V. D. Voort | Stefan Klein | Sonam Sharma | T. Tseng | O. Keunen | Karthik Ramadass | Silky Chotai | A. Mistry | A. Sayah | Camelia Bencheqroun | A. Belouali | T. Booth | Alysha Chelliah | Haris Shuaib | Carmen Dragos | Aly H Abayazeed | K. Kolodziej | Michael Hill | A. Abbassy | S. Gamal | Mahmoud Mekhaimar | Mohamed Qayati | Sean Benson | R. Beets-Tan | A. Herrera-Trujillo | M. Trujillo | W. Escobar | A. Abello | José Bernal | Jhonny C. G'omez | Josephine Choi | H. Ismael | B. Allen | M. Weller | A. Bink | B. Pouymayou | H. F. Shaykh | Sampurna Shrestha | K. M. Mani | David Payne | Heydy Franco-Maldonado | Sebastián Quevedo | Pamela Guevara | Esteban Torche | C. Mendoza | Franco Vera | Elvis R'ios | E. L'opez | G. Ogbole | Dotun Oyekunle | O. Odafe-Oyibotha | B. Osobu | Mustapha Shu'aibu | Adeleye Dorcas | M. Soneye | F. Dako | A. Tran | D. Cutler | Deepak Kattil Veettil | Kendall Schmidt | Brian Bialecki | S. Marella | Charles Apgar | Prashant Shah | Pamela J. LaMontagne | Chencai Wang | Y. Choi | Subha Madhavan | Evan Calabrese | Nicholas C. Wang | N. Wen | R. Verma | Yuriy Gusev | Reid C. Thompson | Shih-Han Wang | M. Zenk | Divya Reddy | I. Yadav | K. Maier-Hein | W. Wick | Luke V. M. Dixon | Sebastian Quevedo | Mustapha Shu’aibu | K. Bhuvaneshwar | Raphael Meier | Y. Choi | P. LaMontagne | Richard McKinley | Matthew H. Larson | Fatih Incekara | J. Yun | F. Sprenger | A. Alafandi | T. So | L. Pei | D. Marcus | J.M. Farinhas | S. Ahn | R. Beets-Tan | Chaitra Badve | Piotr Radojewski | Farouk Dako | Aly H. Abayazeed | Jonas Teuwen | Bertrand Pouymayou

[1]  Bjoern H Menze,et al.  The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research , 2022, Physics in medicine and biology.

[2]  Ramya Jayaram Masti,et al.  SoK: Hardware-supported Trusted Execution Environments , 2022, ArXiv.

[3]  Rajarsi R. Gupta,et al.  Federated Learning for the Classification of Tumor Infiltrating Lymphocytes , 2022, ArXiv.

[4]  S. Walsh,et al.  Federated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease , 2022, Scientific reports.

[5]  Graham W. Taylor,et al.  Federated learning and differential privacy for medical image analysis , 2021, Scientific Reports.

[6]  Ming Y. Lu,et al.  Federated learning for computational pathology on gigapixel whole slide images , 2020, Medical Image Anal..

[7]  Hamid R. Tizhoosh,et al.  ProxyFL: Decentralized Federated Learning through Proxy Model Sharing , 2021, ArXiv.

[8]  J. Olson Congress of Neurological Surgeons systematic review and evidence-based guidelines for the treatment of adults with progressive glioblastoma update: introduction and methods , 2021, Journal of Neuro-Oncology.

[9]  Colin B. Compas,et al.  Federated learning for predicting clinical outcomes in patients with COVID-19 , 2021, Nature Medicine.

[10]  Daguang Xu,et al.  Multi-task Federated Learning for Heterogeneous Pancreas Segmentation , 2021, CLIP/DCL/LL-COVID19/PPML@MICCAI.

[11]  Christos Davatzikos,et al.  The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification , 2021, ArXiv.

[12]  G. Reifenberger,et al.  The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. , 2021, Neuro-oncology.

[13]  Gu-Yeon Wei,et al.  Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix , 2021, ICML.

[14]  Micah J. Sheller,et al.  OpenFL: the open federated learning library , 2021, Physics in medicine and biology.

[15]  GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-to-End Clinical Workflows in Medical Imaging , 2021, ArXiv.

[16]  Daguang Xu,et al.  Federated learning improves site performance in multicenter deep learning without data sharing , 2021, J. Am. Medical Informatics Assoc..

[17]  Klaus H. Maier-Hein,et al.  Analyzing magnetic resonance imaging data from glioma patients using deep learning , 2020, Comput. Medical Imaging Graph..

[18]  Bradford J. Wood,et al.  Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan , 2020, Medical Image Analysis.

[19]  S. Ourselin,et al.  TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning , 2020, Comput. Methods Programs Biomed..

[20]  Richard Nock,et al.  Advances and Open Problems in Federated Learning , 2019, Found. Trends Mach. Learn..

[21]  Jens Petersen,et al.  nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.

[22]  Colin B. Compas,et al.  Federated Learning for Breast Density Classification: A Real-World Implementation , 2020, DART/DCL@MICCAI.

[23]  Joseph Ross Mitchell,et al.  Deep neural network to locate and segment brain tumors outperformed the expert technicians who created the training data , 2020, Journal of medical imaging.

[24]  Spyridon Bakas,et al.  Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data , 2020, Scientific Reports.

[25]  J. Boxerman,et al.  Value of Dynamic Contrast Perfusion MRI to Predict Early Response to Bevacizumab in Newly Diagnosed Glioblastoma: Results from ACRIN 6686 Multi-Center Trial. , 2020, Neuro-oncology.

[26]  R. Verhaak,et al.  iGLASS: Imaging integration into the Glioma Longitudinal AnalySiS Consortium. , 2020, Neuro-oncology.

[27]  Tonya White,et al.  Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed , 2020, Human brain mapping.

[28]  Siddhesh P. Thakur,et al.  Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training☆ , 2020, NeuroImage.

[29]  Julio Christian Young Applicability of Various Pre-Trained Deep Convolutional Neural Networks for Pneumonia Classification based on X-Ray Images , 2020 .

[30]  Rickmer Braren,et al.  Secure, privacy-preserving and federated machine learning in medical imaging , 2020, Nature Machine Intelligence.

[31]  Christos Davatzikos,et al.  Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities , 2020, Journal of medical imaging.

[32]  Claus Zimmer,et al.  BraTS Toolkit: Translating BraTS Brain Tumor Segmentation Algorithms Into Clinical and Scientific Practice , 2020, Frontiers in Neuroscience.

[33]  Micah J. Sheller,et al.  The future of digital health with federated learning , 2020, npj Digital Medicine.

[34]  Christos Davatzikos,et al.  AI-based Prognostic Imaging Biomarkers for Precision Neurooncology: the ReSPOND Consortium. , 2020, Neuro-oncology.

[35]  Christos Davatzikos,et al.  Histopathology‐validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo‐progression in glioblastoma , 2020, Cancer.

[36]  Christos Davatzikos,et al.  Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma , 2020, JCO clinical cancer informatics.

[37]  Christos Davatzikos,et al.  Integrated Biophysical Modeling and Image Analysis: Application to Neuro-Oncology. , 2020, Annual review of biomedical engineering.

[38]  Christos Davatzikos,et al.  Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion , 2020, Biomed. Signal Process. Control..

[39]  X. Xu,et al.  Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas , 2019, American Journal of Neuroradiology.

[40]  H. Vincent Poor,et al.  Federated Learning With Differential Privacy: Algorithms and Performance Analysis , 2019, IEEE Transactions on Information Forensics and Security.

[41]  A. Simmons,et al.  The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study , 2019, Medical Image Anal..

[42]  S. Bakas,et al.  Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review , 2020, Journal of magnetic resonance imaging : JMRI.

[43]  Spyridon Bakas,et al.  Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the BraTS Data Using a 3D Convolutional Neural Network , 2019, Front. Comput. Neurosci..

[44]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[45]  Christos Davatzikos,et al.  Precision diagnostics based on machine learning-derived imaging signatures. , 2019, Magnetic resonance imaging.

[46]  Christopher G Schwarz,et al.  Identification of Anonymous MRI Research Participants with Face-Recognition Software. , 2019, The New England journal of medicine.

[47]  Megh Bhalerao,et al.  Brain Tumor Segmentation Based on 3D Residual U-Net , 2019, BrainLes@MICCAI.

[48]  Christos Davatzikos,et al.  The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview , 2019, BrainLes@MICCAI.

[49]  Yury Gorbachev,et al.  OpenVINO Deep Learning Workbench: Comprehensive Analysis and Tuning of Neural Networks Inference , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[50]  Claudia Iriondo,et al.  Distance Map Loss Penalty Term for Semantic Segmentation , 2019, ArXiv.

[51]  Jon Kleinberg,et al.  Transfusion: Understanding Transfer Learning for Medical Imaging , 2019, NeurIPS.

[52]  Masoumeh Haghpanahi,et al.  Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network , 2019, Nature Medicine.

[53]  Aaron Carass,et al.  Evaluating the Impact of Intensity Normalization on MR Image Synthesis , 2018, Medical Imaging: Image Processing.

[54]  Amir Houmansadr,et al.  Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning , 2018, 2019 IEEE Symposium on Security and Privacy (SP).

[55]  Dan Boneh,et al.  Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware , 2018, ICLR.

[56]  J. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. , 2019, Neuro-oncology.

[57]  Mats Jirstrand,et al.  A Performance Evaluation of Federated Learning Algorithms , 2018, DIDL@Middleware.

[58]  et al.,et al.  Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge , 2018, ArXiv.

[59]  Christos Davatzikos,et al.  NIMG-40. NON-INVASIVE IN VIVO SIGNATURE OF IDH1 MUTATIONAL STATUS IN HIGH GRADE GLIOMA, FROM CLINICALLY-ACQUIRED MULTI-PARAMETRIC MAGNETIC RESONANCE IMAGING, USING MULTIVARIATE MACHINE LEARNING , 2018, Neuro-Oncology.

[60]  Marcus A. Badgeley,et al.  Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study , 2018, PLoS medicine.

[61]  Richard McKinley,et al.  Ensembles of Densely-Connected CNNs with Label-Uncertainty for Brain Tumor Segmentation , 2018, BrainLes@MICCAI.

[62]  Spyridon Bakas,et al.  Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation , 2018, BrainLes@MICCAI.

[63]  M. Gilbert,et al.  Prognostic value of contrast enhancement and FLAIR for survival in newly diagnosed glioblastoma treated with and without bevacizumab: results from ACRIN 6686 , 2018, Neuro-oncology.

[64]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[65]  Christos Davatzikos,et al.  In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature , 2018, Neuro-oncology.

[66]  Christos Davatzikos,et al.  Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development. , 2018, Cancer cell.

[67]  Guillermo Sapiro,et al.  Continuous Dice Coefficient: a Method for Evaluating Probabilistic Segmentations , 2018, bioRxiv.

[68]  Bruce R. Rosen,et al.  Distributed deep learning networks among institutions for medical imaging , 2018, J. Am. Medical Informatics Assoc..

[69]  Christos Davatzikos,et al.  Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques , 2018, Medical Imaging.

[70]  Lucy F. Stead,et al.  Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium , 2018, Neuro-oncology.

[71]  Li Lei,et al.  Integrating Remote Attestation with Transport Layer Security , 2018, ArXiv.

[72]  Gary Marcus,et al.  Deep Learning: A Critical Appraisal , 2018, ArXiv.

[73]  Christos Davatzikos,et al.  Use of Fetal Magnetic Resonance Image Analysis and Machine Learning to Predict the Need for Postnatal Cerebrospinal Fluid Diversion in Fetal Ventriculomegaly , 2017, JAMA pediatrics.

[74]  Xu Han,et al.  Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach , 2017, NeuroImage.

[75]  Barukh Ziv,et al.  Lower Numerical Precision Deep Learning Inference and Training , 2018 .

[76]  Christos Davatzikos,et al.  Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome , 2018, Journal of medical imaging.

[77]  Charu C. Aggarwal,et al.  Neural Networks and Deep Learning , 2018, Springer International Publishing.

[78]  Shuang Song,et al.  A review of Methods for Bias Correction in Medical Images , 2017 .

[79]  Christos Davatzikos,et al.  Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma , 2017, BrainLes@MICCAI.

[80]  Christos Davatzikos,et al.  Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.

[81]  Paul Voigt,et al.  The Eu General Data Protection Regulation (Gdpr): A Practical Guide , 2017 .

[82]  Spyridon Bakas,et al.  Advanced magnetic resonance imaging in glioblastoma: a review. , 2017, Chinese clinical oncology.

[83]  Sébastien Ourselin,et al.  Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations , 2017, DLMIA/ML-CDS@MICCAI.

[84]  Deniz Erdogmus,et al.  Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks , 2017, MLMI@MICCAI.

[85]  Christos Davatzikos,et al.  In Vivo Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The ϕ-Index , 2017, Clinical Cancer Research.

[86]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[87]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[88]  Paul Voigt,et al.  The EU General Data Protection Regulation (GDPR) , 2017 .

[89]  Christos Davatzikos,et al.  Segmentation of Gliomas in Pre-operative and Post-operative Multimodal Magnetic Resonance Imaging Volumes Based on a Hybrid Generative-Discriminative Framework , 2016, BrainLes@MICCAI.

[90]  Z. Obermeyer,et al.  Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. , 2016, The New England journal of medicine.

[91]  Christopher Joseph Pal,et al.  The Importance of Skip Connections in Biomedical Image Segmentation , 2016, LABELS/DLMIA@MICCAI.

[92]  Paul A. Yushkevich,et al.  FAST AUTOMATIC SEGMENTATION OF HIPPOCAMPAL SUBFIELDS AND MEDIAL TEMPORAL LOBE SUBREGIONS IN 3 TESLA AND 7 TESLA T2-WEIGHTED MRI , 2016, Alzheimer's & Dementia.

[93]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[94]  Christopher Rorden,et al.  The first step for neuroimaging data analysis: DICOM to NIfTI conversion , 2016, Journal of Neuroscience Methods.

[95]  G. Biros,et al.  Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma. , 2016, Neurosurgery.

[96]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[97]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[98]  Sachin S. Talathi,et al.  Fixed Point Quantization of Deep Convolutional Networks , 2015, ICML.

[99]  J. Príncipe,et al.  Efficient and robust deep learning with Correntropy-induced loss function , 2016, Neural Computing and Applications.

[100]  Bilwaj Gaonkar,et al.  GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines for Glioma Segmentation , 2015, Brainles@MICCAI.

[101]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[102]  Abdelmadjid Bouabdallah,et al.  Trusted Execution Environment: What It is, and What It is Not , 2015, 2015 IEEE Trustcom/BigDataSE/ISPA.

[103]  Guanghui Wang,et al.  Label Fusion for Multi-atlas Segmentation Based on Majority Voting , 2015, ICIAR.

[104]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[105]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[106]  Luke Macyszyn,et al.  Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. , 2014, Radiology.

[107]  K. Aldape,et al.  A randomized trial of bevacizumab for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[108]  N. Asokan,et al.  The Untapped Potential of Trusted Execution Environments on Mobile Devices , 2013, IEEE Security & Privacy.

[109]  Kirby G. Vosburgh,et al.  3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support , 2014 .

[110]  K. Aldape,et al.  IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. , 2014, Neuro-oncology.

[111]  Thomas E. Nichols,et al.  The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data , 2014, Brain Imaging and Behavior.

[112]  Thomas E. Nichols,et al.  The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data , 2014, Brain Imaging and Behavior.

[113]  J. M. Pierre Langlois,et al.  Enhanced Precision Analysis for Accuracy-Aware Bit-Width Optimization Using Affine Arithmetic , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[114]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[115]  Jay K. Nathan,et al.  Multi-institutional validation of a preoperative scoring system which predicts survival for patients with glioblastoma , 2013, Journal of Clinical Neuroscience.

[116]  Robert Jeraj,et al.  RTOG 0825: Phase III double-blind placebo-controlled trial evaluating bevacizumab (Bev) in patients (Pts) with newly diagnosed glioblastoma (GBM). , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[117]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[118]  Oleg S. Pianykh,et al.  Digital Imaging and Communications in Medicine (DICOM) , 2017, Radiopaedia.org.

[119]  Max A. Viergever,et al.  Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE) , 2010, IEEE Transactions on Medical Imaging.

[120]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[121]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[122]  Adolf Pfefferbaum,et al.  The SRI24 multichannel atlas of normal adult human brain structure , 2009, Human brain mapping.

[123]  D. Peck Digital Imaging and Communications in Medicine (DICOM): A Practical Introduction and Survival Guide , 2009, Journal of Nuclear Medicine.

[124]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[125]  W. Curry,et al.  Racial, ethnic and socioeconomic disparities in the treatment of brain tumors , 2009, Journal of Neuro-Oncology.

[126]  Peter A Merkel,et al.  Clinical research for rare disease: opportunities, challenges, and solutions. , 2009, Molecular genetics and metabolism.

[127]  M. Grgic,et al.  Overview of the DICOM standard , 2008, 2008 50th International Symposium ELMAR.

[128]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[129]  S. Marsland Novelty Detection in Learning Systems , 2008 .

[130]  Charles E Kahn,et al.  DICOM and radiology: past, present, and future. , 2007, Journal of the American College of Radiology : JACR.

[131]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[132]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[133]  Torsten Rohlfing,et al.  Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation , 2004, IEEE Transactions on Medical Imaging.

[134]  C. Maurer,et al.  Multi-classifier framework for atlas-based image segmentation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[135]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[136]  R. Velthuizen,et al.  Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. , 2004, International journal of radiation oncology, biology, physics.

[137]  G. Annas HIPAA regulations - a new era of medical-record privacy? , 2003, The New England journal of medicine.

[138]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[139]  Benoit M. Dawant,et al.  Morphometric analysis of white matter lesions in MR images: method and validation , 1994, IEEE Trans. Medical Imaging.

[140]  John Bingham,et al.  Data Processing , 1989, Macmillan Professional Masters.

[141]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[142]  C. Ballantine On the Hadamard product , 1968 .

[143]  I. Barrodale L1 Approximation and the Analysis of Data , 1968 .