Bright-Dark Soliton Waves' Dynamics in Pseudo Spherical Surfaces through the Nonlinear Kaup-Kupershmidt Equation
暂无分享,去创建一个
Mostafa M. A. Khater | Lanre Akinyemi | S. H. Alfalqi | J. F. Alzaidi | Sayed K. Elagan | Nawal A. Alshehri | Mohammed A. El-Shorbagy | Suleman H. Alfalqi | Jameel F. Alzaidi | M. El-Shorbagy | M. Khater | S. Elagan | L. Akinyemi | S. Alfalqi | N. Alshehri | M. A. El-Shorbagy
[2] D. Baleanu,et al. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model , 2021, Discrete & Continuous Dynamical Systems - S.
[3] Mostafa M. A. Khater,et al. Computational simulations of the couple Boiti–Leon–Pempinelli (BLP) system and the (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation , 2020 .
[4] Mostafa M. A. Khater,et al. Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher–order dispersive cubic–quintic , 2020 .
[5] M. Khater,et al. Analytical and semi‐analytical solutions for time‐fractional Cahn–Allen equation , 2020, Mathematical Methods in the Applied Sciences.
[6] A. Seadawy,et al. Applications of dispersive analytical wave solutions of nonlinear seventh order Lax and Kaup-Kupershmidt dynamical wave equations , 2019, Results in Physics.
[7] Shahzad Sarwar,et al. Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique , 2020 .
[8] M. Khater. Comment on four papers of Elsayed M.E. Zayed, Abdul-Ghani Al-Nowehy, Reham M.A. Shohib and Khaled A.E. Alurrfi (Optik 130 (2017) 1295–1311 & Optik 143 (2017) 84–103 & Optik 158 (2018) 970–984 & Optik 144 (2017) 132–148) , 2018, Optik.
[9] K. U. Tariq,et al. Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method , 2021 .
[10] Dianchen Lu,et al. On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves , 2020 .
[11] Kangxi Wang. A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge , 2020, The European Physical Journal Plus.
[12] Abdon Atangana,et al. Conservatory of Kaup-Kupershmidt Equation to the Concept of Fractional Derivative with and without Singular Kernel , 2018 .
[13] A. Mousa,et al. Analytical and semi-analytical solutions for Phi-four equation through three recent schemes , 2021 .
[14] Mostafa M. A. Khater,et al. Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model , 2021 .
[15] Mohamed Nazih Omri,et al. Abundant distinct types of solutions for the nervous biological fractional FitzHugh–Nagumo equation via three different sorts of schemes , 2020, Advances in Difference Equations.
[16] M. Khater,et al. On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equation , 2021 .
[17] S. Mohyud-Din,et al. Numerical soliton solution of the Kaup‐Kupershmidt equation , 2011 .
[18] M. Khater,et al. Optical soliton structure of the sub-10-fs-pulse propagation model , 2021 .
[19] Mostafa M. A. Khater,et al. Computational and numerical simulations for the nonlinear fractional Kolmogorov–Petrovskii–Piskunov (FKPP) equation , 2020, Physica Scripta.
[20] Mostafa M. A. Khater,et al. Two effective computational schemes for a prototype of an excitable system , 2020 .
[21] Dumitru Baleanu,et al. On abundant new solutions of two fractional complex models , 2020 .
[22] D. G. Prakasha,et al. An efficient computational technique for time‐fractional Kaup‐Kupershmidt equation , 2020, Numerical Methods for Partial Differential Equations.
[23] D. Baleanu,et al. Oblique explicit wave solutions of the fractional biological population (BP) and equal width (EW) models , 2020 .
[24] M. Khater,et al. Multi–solitons, lumps, and breath solutions of the water wave propagation with surface tension via four recent computational schemes , 2021 .
[25] Mustafa Inç,et al. On numerical soliton solution of the Kaup-Kupershmidt equation and convergence analysis of the decomposition method , 2006, Appl. Math. Comput..
[26] Enrique G. Reyes,et al. Nonlocal symmetries and the Kaup–Kupershmidt equation , 2005 .
[27] M. El-Shorbagy,et al. Abundant stable computational solutions of Atangana–Baleanu fractional nonlinear HIV-1 infection of CD4+ T-cells of immunodeficiency syndrome , 2021 .