Statistical channel model based on α-stable random processes and application to the 60 GHz ultra wide band channel

In this paper, we introduce a statistical model of the ultra wide band channel impulse response at 60 GHz. The novelty of our model is to consider the transfer function as an α-stable random process. It leads to a characterization of the channel by a deterministic measure that can be estimated from observed transfer functions. We present the theoretical framework of our proposed solution and the necessary tools to estimate the characteristic measure and generate the impulse responses. Simulations based on 2 GHz wide channel measurements in the 60 GHz band show the validity of our model.

[1]  Andreas F. Molisch,et al.  Ultrawideband propagation channels-theory, measurement, and modeling , 2005, IEEE Transactions on Vehicular Technology.

[2]  P. Bello Characterization of Randomly Time-Variant Linear Channels , 1963 .

[3]  Theodore S. Rappaport,et al.  Statistical channel impulse response models for factory and open plan building radio communicate system design , 1991, IEEE Trans. Commun..

[4]  Kyutae Lim,et al.  Analysis of 60 GHz band indoor wireless channels with channel configurations , 1998, Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Cat. No.98TH8361).

[5]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[6]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[7]  Nikolay N. Demesh,et al.  Estimation of the spectral density of a homogeneous random stable discrete time field , 2005 .

[8]  P.F.M. Smulders,et al.  Wide-band simulations and measurements of MM-wave indoor radio channels , 1994, 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks - Catching the Mobile Future..

[9]  J. P. Daniel,et al.  Extension of cavity method to analyse aperture coupled microstrip patch antenna with thick ground plane , 1998 .

[10]  Philip Constantinou,et al.  Indoor channel modeling at 60 GHz for wireless LAN applications , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[11]  Laurent Clavier,et al.  Performance of DS-CDMA on the 60 GHz channel , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[12]  Luis M. Correia,et al.  Characterisation of propagation in 60 GHz radio channels (invited) , 2004 .

[13]  Ghaïs El Zein,et al.  Wideband and dynamic characterization of the 60GHZ indoor radio propagation — future homeWLAN architectures , 2003, Ann. des Télécommunications.

[14]  I. A. Koutrouvelis An iterative procedure for the estimation of the parameters of stable laws , 1981 .

[15]  Gregory D. Durgin,et al.  Space-Time Wireless Channels , 2002 .

[16]  Norman C. Beaulieu,et al.  Interference analysis of uwb systems for IEEE channel models using first- and second-order moments , 2009, IEEE Transactions on Communications.

[17]  Theodore S. Rappaport,et al.  Application of second-order statistics for an indoor radio channel model , 1989, IEEE 39th Vehicular Technology Conference.

[18]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..

[19]  Paul-Alain Rolland,et al.  Wide band 60 GHz indoor channel: characterization and statistical modeling , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[20]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2003, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications - SPAWC 2003 (IEEE Cat. No.03EX689).

[21]  P.F.M. Smulders,et al.  Frequency-domain measurement of the millimeter wave indoor radio channel , 1995 .

[22]  Rachid Sabre,et al.  Discrete estimation of spectral density for symmetric stable process , 2000 .

[23]  Larry J. Greenstein,et al.  Comparison study of UWB indoor channel models , 2007, IEEE Transactions on Wireless Communications.

[24]  Andreas F. Molisch,et al.  Ultra-Wide-Band Propagation Channels , 2009, Proceedings of the IEEE.

[25]  Kaveh Pahlavan,et al.  Autoregressive modeling of wide-band indoor radio propagation , 1992, IEEE Trans. Commun..

[26]  George L. Turin,et al.  A statistical model of urban multipath propagation , 1972 .

[27]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[28]  Hirofumi Suzwi,et al.  A Statistical Model for Urban Radio Propagation , 1977 .

[29]  Byron J. T. Morgan,et al.  Improved estimation of the stable laws , 2008, Stat. Comput..

[30]  H. Suzuki,et al.  A Statistical Model for Urban Radio Propogation , 1977, IEEE Trans. Commun..

[31]  J. Kunisch,et al.  MEDIAN 60 GHz wideband indoor radio channel measurements and model , 1999, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324).

[32]  Adolf Finger,et al.  Simple channel model for 60 GHz indoor wireless LAN design based on complex wideband measurements , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[33]  Christophe Loyez,et al.  Path‐loss model of the 60‐GHz indoor radio channel , 2002 .

[34]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[35]  Danijela Cabric,et al.  Novel Radio Architectures for UWB, 60 GHz, and Cognitive Wireless Systems , 2006, EURASIP J. Wirel. Commun. Netw..

[36]  E. Fama,et al.  Some Properties of Symmetric Stable Distributions , 1968 .

[37]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[38]  W. DuMouchel On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution , 1973 .

[39]  Yves Louët,et al.  Comparison of measurements and simulations in indoor environments for wireless local networks at 60 GHz , 2002, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367).

[40]  Chung-Hsuan Wang,et al.  Signal-to-Interference-Plus-Noise Ratio Analysis for Direct-Sequence Ultra-Wideband Systems in Generalized Saleh–Valenzuela Channels , 2007, IEEE Journal of Selected Topics in Signal Processing.

[41]  K. Pahlavan,et al.  Frequency domain measurements of indoor radio channels , 1989 .

[42]  S. Yong,et al.  TG3c channel modeling sub-committee final report , 2007 .

[43]  H. Hashemi Simulation of the urban radio propagation channel , 1979, IEEE Transactions on Vehicular Technology.

[44]  V. Zolotarev One-dimensional stable distributions , 1986 .

[45]  Theodore S. Rappaport,et al.  Short-Range Wireless Communications for Next-Generation Networks: UWB, 60 GHz Millimeter-Wave WPAN, And ZigBee , 2007, IEEE Wireless Communications.

[46]  H. Hashemi,et al.  The indoor radio propagation channel , 1993, Proc. IEEE.

[47]  R. Emrick,et al.  Emerging Commercial Applications Using the 60 GHz Unlicensed Band: Opportunities and Challenges , 2006, 2006 IEEE Annual Wireless and Microwave Technology Conference.

[48]  Laurent Clavier,et al.  Simulation of DS-CDMA on the LOS multipath 60 GHz channel and performance with RAKE receiver , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[49]  Stamatis Cambanis,et al.  Spectral density estimation for stationary stable processes , 1984 .

[50]  S. W. Wales,et al.  Wideband propagation measurements of short range millimetric radio channels , 1993 .

[51]  Rittwik Jana,et al.  Measurement and modeling of an ultra-wide bandwidth indoor channel , 2004, IEEE Transactions on Communications.

[52]  Li-Chun Wang,et al.  BER Analysis in A Generalized UWB Frequency Selective Fading Channel With Randomly Arriving Clusters and Rays , 2007, 2007 IEEE International Conference on Communications.

[53]  Clare D. McGillem,et al.  A statistical model for the factory radio channel , 1991, IEEE Trans. Commun..

[54]  Maxime Flament,et al.  Virtual cellular networks for 60 GHz wireless infrastructure , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[55]  Laurent Clavier,et al.  Path delay model based on /spl alpha/-stable distribution for the 60 GHz indoor channel , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[56]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..