Theory of Strings with Boundaries: Fluctuations, Topology, and Quantum Geometry

We discuss Polyakov's quantization of the string in the presence of a boundary allowing for an arbitrary topology for the world sheet. In addition to the dynamical conformal factor discovered by Polyakov, there are a finite number of new degrees of freedom if the surface is more complicated than a sphere or a disc. The quantization of the Liouville theory in an arbitrary topology is discussed. A one-loop calculation shows that the model is renormalizable if one performs a mass renormalization and an additive field renormalization. The renormalization group equations have a perturbative infrared unstable fixed point in all topologies.

[1]  A two-dimensional model for mesons , 1974 .

[2]  T. Eguchi New Approach to the Quantized String Theory , 1980 .

[3]  R. Balian,et al.  Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces , 1971 .

[4]  K. Symanzik,et al.  ANOMALIES OF THE FREE LOOP WAVE EQUATION IN THE WKB APPROXIMATION , 1980 .

[5]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[6]  I. Singer,et al.  Analytic torsion for complex manifolds , 1973 .

[7]  James Eells,et al.  A fibre bundle description of Teichmüller theory , 1969 .

[8]  H. Rauch A transcendental view of the space of algebraic Riemann surfaces , 1965 .

[9]  C. Isham,et al.  Non-local conformal anomalies☆ , 1976 .

[10]  M. Virasoro,et al.  On a formulation of Polyakov's string theory with regular classical solutions , 1982 .

[11]  Tetsuo Goto,et al.  Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model , 1971 .

[12]  H. Nielsen,et al.  Dual models as saddle point approximations to Polyakov's quantized string , 1982 .

[13]  Stephen W. Hawking Zeta function regularization of path integrals in curved spacetime , 1977 .

[14]  I. Singer,et al.  R-Torsion and the Laplacian on Riemannian manifolds , 1971 .

[15]  Michael E. Peskin,et al.  Critical point behavior of the Wilson loop , 1980 .

[16]  L. Ahlfors,et al.  Lectures on quasiconformal mappings , 1966 .

[17]  M. Duff,et al.  Trace anomalies in dimensional regularization , 1974 .

[18]  A. Neveu,et al.  The dual string spectrum in Polyakov's quantization (I) , 1982 .

[19]  L. Brink,et al.  A locally supersymmetric and reparametrization invariant action for the spinning string , 1976 .

[20]  E. Onofri On the positivity of the effective action in a theory of random surfaces , 1982 .

[21]  W. Abikoff,et al.  The real analytic theory of Teichmüller space , 1980 .

[22]  T. Curtright,et al.  Conformally Invariant Quantization of the Liouville Theory. , 1982 .

[23]  A. Schwarz,et al.  Anomalies and elliptic operators , 1979 .

[24]  B. Zumino,et al.  A complete action for the spinning string , 1976 .

[25]  A. Schwarz Instantons and fermions in the field of instanton , 1979 .