Orientation of the transcription preinitiation complex in archaea.

The basal transcription machinery of Archaea corresponds to the minimal subset of factors required for RNA polymerase II transcription in eukaryotes. Using just two factors, Archaea recruit the RNA polymerase to promoters and define the direction of transcription. Notably, the principal determinant for the orientation of transcription is not the recognition of the TATA box by the TATA-box-binding protein. Instead, transcriptional polarity is governed by the interaction of the archaeal TFIIB homologue with a conserved motif immediately upstream of the TATA box. This interaction yields an archaeal preinitiation complex with the same orientation as the analogous eukaryal complex.

[1]  P B Sigler,et al.  The structural basis for the oriented assembly of a TBP/TFB/promoter complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Bell,et al.  Temperature, template topology, and factor requirements of archaeal transcription. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Geiduschek,et al.  Affinity, stability and polarity of binding of the TATA binding protein governed by flexure at the TATA Box. , 1998, Journal of molecular biology.

[4]  S. Bell,et al.  Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. , 1998, Trends in microbiology.

[5]  M. Brand,et al.  Function of TAFII-containing complex without TBP in transcription by RNA polymerase II , 1998, Nature.

[6]  S. Jackson,et al.  Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength. , 1998, Molecular cell.

[7]  J. Dennis,et al.  Bidirectional binding of the TATA box binding protein to the TATA box. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[9]  T. Burke,et al.  The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. , 1997, Genes & development.

[10]  J. Reeve,et al.  Archaeal Histones, Nucleosomes, and Transcription Initiation , 1997, Cell.

[11]  P B Sigler,et al.  The 2.1-A crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATA-box. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Bell,et al.  Factor requirements for transcription in the Archaeon Sulfolobus shibatae , 1997, The EMBO journal.

[13]  P B Sigler,et al.  The crystal structure of a hyperthermophilic archaeal TATA-box binding protein. , 1996, Journal of molecular biology.

[14]  M. Thomm,et al.  Two Transcription Factors Related with the Eucaryal Transcription Factors TATA-binding Protein and Transcription Factor IIB Direct Promoter Recognition by an Archaeal RNA Polymerase* , 1996, The Journal of Biological Chemistry.

[15]  R. Dickerson,et al.  How proteins recognize the TATA box. , 1996, Journal of molecular biology.

[16]  W. D. de Vos,et al.  A cell-free transcription system for the hyperthermophilic archaeon Pyrococcus furiosus. , 1996, Nucleic acids research.

[17]  S K Burley,et al.  Crystal structure of a human TATA box-binding protein/TATA element complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Sigler,et al.  Crystal Structure of the Yeast TFIIA/TBP/DNA Complex , 1996, Science.

[19]  T. Richmond,et al.  Crystal structure of a yeast TFIIA/TBP/DNA complex , 1996, Nature.

[20]  S. Burley,et al.  Crystal structure of a TFIIB–TBP–TATA-element ternary complex , 1995, Nature.

[21]  S. Hahn,et al.  Model for binding of transcription factor TFIIB to the TBP-DNA complex , 1995, Nature.

[22]  R. Tjian,et al.  Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II , 1995, Cell.

[23]  D. Reinberg,et al.  Recycling of the general transcription factors during RNA polymerase II transcription. , 1995, Genes & development.

[24]  R. Young,et al.  The RNA polymerase II holoenzyme and its implications for gene regulation. , 1995, Trends in biochemical sciences.

[25]  P. Baumann,et al.  The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria. , 1994, Science.

[26]  Thomas Shenk,et al.  TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA , 1994, Cell.

[27]  Stephen K. Burley,et al.  Co-crystal structure of TBP recognizing the minor groove of a TATA element , 1993, Nature.

[28]  Steven Hahn,et al.  Crystal structure of a yeast TBP/TATA-box complex , 1993, Nature.

[29]  D. Reinberg,et al.  Multiple functional domains of human transcription factor IIB: distinct interactions with two general transcription factors and RNA polymerase II. , 1993, Genes & development.

[30]  T Lagrange,et al.  New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. , 1998, Genes & development.