Improving seismic Qp estimation using rock physics constraints

Our goal is to accurately estimate attenuation from seismic data using model regularization in the seismic inversion workflow. One way to achieve this goal is by finding an analytical relation linking Vp to Qp. We derive an approximate closed-form solution relating Vp to Qp using rock physics modeling. This relation is tested on well data from a clean clastic gas reservoir. Next we create a 2D synthetic gas reservoir section populated with Qp and Vp and generate respective synthetic seismograms. The goal now is to invert this synthetic seismic section for Qp. If we use standard seismic inversion based solely on seismic data, the inverted attenuation model has low resolution, incorrect positioning, and is distorted. However, adding our relation between velocity and attenuation, we obtain an attenuation model very close to the original section. This method is tested on a 2D field seismic dataset from Gulf of Mexico (GOM). The resulting Qp model matches the geological shape of an absorption body interpreted ...

[1]  T. Mukerji,et al.  The Rock Physics Handbook , 2020 .

[2]  Robert G. Clapp,et al.  Q-model building using one-way wave-equation migration Q analysis — Part 1: Theory and synthetic test , 2018 .

[3]  R. Clapp,et al.  Q-model building using one-way wave-equation migration Q analysis — Part 2: 3D field-data test , 2018 .

[4]  R. Clapp,et al.  Wave-equation based Q tomography from angle-domain common image gathers , 2015 .

[5]  V. Goh,et al.  Image-based Q Tomography using Wavefield Continuation In the Presence of Strong Attenuation Anomalies: A Case Study in Gulf of Mexico , 2015 .

[6]  Y. Li,et al.  Integration of Seismic and Fluid-flow Data: a Two-way Road Linked by Rock Physics , 2015 .

[7]  T. Zhu,et al.  Image-Based Q Tomography using Reverse Time Q Migration , 2015 .

[8]  L. Sirgue,et al.  FWI-Guided Q Tomography and Q-PSDM for Imaging in the Presence of Complex Gas Clouds, A Case Study From Offshore Malaysia , 2014 .

[9]  Biondo Biondi,et al.  Q-compensated reverse-time migration , 2014 .

[10]  Tieyuan Zhu,et al.  Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians , 2014 .

[11]  D. Grana,et al.  Seismic Reflections of Rock Properties , 2014 .

[12]  Robert G. Clapp,et al.  Wave-equation Migration Q Analysis (WEMQA) , 2013 .

[13]  Shuangquan Chen,et al.  Modeling and analysis of seismic wave dispersion based on the rock physics model , 2013 .

[14]  I. Jones Absorption related velocity dispersion below a possible gas hydrate geobody , 2013 .

[15]  Jun Cai,et al.  Q tomography towards true amplitude image and improve sub-karst image , 2012 .

[16]  M. Lebedev,et al.  Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — A review , 2010 .

[17]  T. Mukerji,et al.  The Rock Physics Handbook: Contents , 2009 .

[18]  H. Burkhardt,et al.  Ultrasonic properties of sedimentary rocks: effect of pressure, saturation, frequency and microcracks , 2006 .

[19]  S. Brandsberg-Dahl,et al.  The 2004 BP Velocity Benchmark , 2005 .

[20]  M. S. King,et al.  The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks , 1997 .

[21]  Amos Nur,et al.  Elasticity of high‐porosity sandstones: Theory for two North Sea data sets , 1996 .

[22]  T. Mukerji,et al.  Fluid substitution: Estimating changes in VP without knowing VS , 1995 .

[23]  R. Tonn,et al.  THE DETERMINATION OF THE SEISMIC QUALITY FACTOR Q FROM VSP DATA: A COMPARISON OF DIFFERENT COMPUTATIONAL METHODS1 , 1991 .

[24]  William F. Murphy,et al.  Frame modulus reduction in sedimentary rocks: The effect of adsorption on grain contacts , 1984 .

[25]  I. Palmer,et al.  Attenuation by squirt flow in undersaturated gas sands , 1980 .

[26]  L. L. Raymer,et al.  An Improved Sonic Transit Time-To-Porosity Transform , 1980 .

[27]  Bernard Budiansky,et al.  Viscoelastic properties of fluid-saturated cracked solids , 1977 .

[28]  Amos Nur,et al.  Melt squirt in the asthenosphere , 1975 .

[29]  J. Geertsma,et al.  SOME ASPECTS OF ELASTIC WAVE PROPAGATION IN FLUID-SATURATED POROUS SOLIDS , 1961 .

[30]  F. Gaßmann Uber die Elastizitat poroser Medien. , 1961 .