Lanthanide Complexes and Quantum Dots: A Bright Wedding for Resonance Energy Transfer

In this microreview we describe the principle of Forster resonance energy transfer (FRET) occurring between closely spaced energy-donor and -acceptor molecules. The theoretical treatment is depicted in relation with the data extractable from spectroscopic measurements. We present the specific case of semiconductor nanocrystals (or quantum dots – QDs) as energy donors in FRET experiments and a particular emphasis is put on the specific advantages of these fluorophores with regard to both their exceptional photophysical properties and their nanoscopic morphology. In a following section, the special attributes of luminescent lanthanide complexes

[1]  J. Franck,et al.  Über Zerlegung von Wasserstoffmolekülen durch angeregte Quecksilberatome , 1922 .

[2]  Igor L. Medintz,et al.  Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.

[3]  V. Raicu Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins , 2007, Journal of biological physics.

[4]  A fluorescence resonance energy transfer sensor based on maltose binding protein. , 2003 .

[5]  Vincenzo Balzani,et al.  ANTENNA EFFECT IN LUMINESCENT LANTHANIDE CRYPTATES: A PHOTOPHYSICAL STUDY , 1990 .

[6]  Günther Carlo Über Entstehung wahrer Lichtabsorption und scheinbare Koppelung von Quantensprüngen , 1922 .

[7]  Th. Förster Energiewanderung und Fluoreszenz , 1946 .

[8]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[9]  J. Bünzli,et al.  Lanthanide Helicates Self-Assembled in Water: A New Class of Highly Stable and Luminescent Dimetallic Carboxylates , 1999 .

[10]  Alfred Ehmert,et al.  Ein einfaches Verfahren zur Messung kleinster Jodkonzentrationen, Jod- und Natriumthiosulfatmengen in Lösungen , 1949 .

[11]  J E Hearst,et al.  Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Selvin,et al.  Thiol-reactive luminescent lanthanide chelates: part 2. , 2003, Bioconjugate chemistry.

[13]  Gérard Mathis,et al.  Energy Transfer Luminescence of Europium(III) and Terbium(III) Cryptates of Macrobicyclic Polypyridine Ligands , 1987 .

[14]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[15]  P. Selvin,et al.  Crystal Structure and Spectroscopic Characterization of a Luminescent Europium Chelate , 1996 .

[16]  B. Meer,et al.  Resonance Energy Transfer: Theory and Data , 1994 .

[17]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[18]  Ilkka Hemmilä,et al.  Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications , 1997 .

[19]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[20]  M. Tan,et al.  A europium(III) complex as an efficient singlet oxygen luminescence probe. , 2006, Journal of the American Chemical Society.

[21]  R. Ziessel,et al.  Photophysical and structural impact of phosphorylated anions associated to lanthanide complexes in water. , 2005, Inorganic chemistry.

[22]  Th. Förster Ein Beitrag zur Theorie der Photosynthese , 1947 .

[23]  F. Raymo,et al.  Luminescent chemosensors based on semiconductor quantum dots. , 2007, Physical chemistry chemical physics : PCCP.

[24]  P. Selvin,et al.  Quantum yields of luminescent lanthanide chelates and far-red dyes measured by resonance energy transfer. , 2001, Journal of the American Chemical Society.

[25]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[26]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[27]  A. Saha,et al.  Time-resolved fluorescence of a new europium-chelate complex: demonstration of highly sensitive detection of protein and DNA samples , 1993 .

[28]  B. Corry,et al.  A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries. , 2005, Biophysical journal.

[29]  Guilan Wang,et al.  Lanthanide-based luminescence probes and time-resolved luminescence bioassays , 2006 .

[30]  Igor L. Medintz,et al.  Quantum-dot-based multiplexed fluorescence resonance energy transfer , 2005, SPIE BiOS.

[31]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[32]  David L. Andrews,et al.  Resonance Energy Transfer , 1999 .

[33]  Hans-Gerd Löhmannsröben,et al.  Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy. , 2006, Journal of the American Chemical Society.

[34]  Igor L. Medintz,et al.  Förster resonance energy transfer investigations using quantum-dot fluorophores. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[36]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[37]  S. Connell,et al.  Emission of 8Begs in the interaction of 12C with nuclei at incident energies up to 33 MeV/amu , 2001 .

[38]  Willem Verboom,et al.  UvA-DARE (Digital Academic Repository) New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexed luminescent lanthanide ions , 2001 .

[39]  Jianghong Rao,et al.  Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. , 2007, Angewandte Chemie.

[40]  J. Franck Einige aus der Theorie von Klein und Bosseland zu ziehende Folgerungen über Fluoreszenz, photochemische Prozesse und die Elektronenemission glühender Körper , 1922 .

[41]  V. Koistinen,et al.  Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay , 1983, Nature.

[42]  Q. Ma,et al.  Fluorescence resonance energy transfer between two luminescent quantum dots using papain as a bridging molecule , 2007 .

[43]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[44]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[45]  S. Weissman,et al.  Intramolecular Energy Transfer The Fluorescence of Complexes of Europium , 1942 .

[46]  K. Akamatsu,et al.  Band gap engineering of CdTe nanocrystals through chemical surface modification. , 2005, Journal of the American Chemical Society.

[47]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[48]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[49]  H. Bazin,et al.  Homogeneous time resolved fluorescence resonance energy transfer using rare earth cryptates as a tool for probing molecular interactions in biology. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[50]  E. Brunet,et al.  Supramolecularly Organized Lanthanide Complexes for Efficient Metal Excitation and Luminescence as Sensors in Organic and Biological Applications , 2007 .

[51]  Dale M. Willard,et al.  CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay , 2001 .

[52]  I. Hemmilä,et al.  Luminescent lanthanide chelates—a way to more sensitive diagnostic methods , 1995 .

[53]  A. Bettencourt-Dias Small Molecule Luminescent Lanthanide Ion Complexes - Photophysical Characterization and Recent Developments , 2007 .

[54]  M. Tan,et al.  Synthesis and luminescence properties of lanthanide(III) chelates with polyacid derivatives of thienyl-substituted terpyridine analogues , 2004 .

[55]  R. Ziessel,et al.  Lanthanide tags for time-resolved luminescence microscopy displaying improved stability and optical properties. , 2001, Journal of the American Chemical Society.

[56]  Massimo Guardigli,et al.  Luminescent lanthanide complexes as photochemical supramolecular devices , 1993 .

[57]  A. Grichine,et al.  Long-lived two-photon excited luminescence of water-soluble europium complex: applications in biological imaging using two-photon scanning microscopy. , 2008, Journal of the American Chemical Society.

[58]  Jean-Marie Lehn,et al.  Photoactive cryptands. Synthesis of the sodium cryptates of macrobicyclic ligands containing bipyridine and phenoanthroline groups , 1984 .

[59]  L. Brand,et al.  Resonance energy transfer: methods and applications. , 1994, Analytical biochemistry.

[60]  Qiang Ma,et al.  Fluorescence resonance energy transfer in doubly-quantum dot labeled IgG system. , 2005, Talanta.

[61]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[62]  J. Beechem,et al.  Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores. , 2006, Analytical biochemistry.

[63]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[64]  Igor L. Medintz,et al.  Quantum dot-based multiplexed fluorescence resonance energy transfer. , 2005 .

[65]  Nicholas A. Kotov,et al.  Albumin−CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect , 2001 .

[66]  J. Kankare,et al.  Development of Luminescent Europium(III) and Terbium(III) chelates of 2,2′:6′,2″‐ terpyridine derivatives for protein labelling , 1993 .

[67]  S. G. Jones,et al.  Improvements in the Sensitivity of Time Resolved Fluorescence Energy Transfer Assays , 2001, Journal of Fluorescence.

[68]  Veli-Matti Mukkala,et al.  Time-Resolution in Fluorometry Technologies, Labels, and Applications in Bioanalytical Assays , 2001 .

[69]  Igor L. Medintz,et al.  Can luminescent quantum dots be efficient energy acceptors with organic dye donors? , 2005, Journal of the American Chemical Society.

[70]  Aldo Roda,et al.  Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging. , 2004, Journal of the American Chemical Society.

[71]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[72]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[73]  H. Hakala,et al.  Solid-phase synthesis of oligonucleotides labeled with luminescent lanthanide(III) chelates. , 2005, Bioconjugate chemistry.

[74]  Cherie R. Kagan,et al.  Electronic energy transfer in CdSe quantum dot solids. , 1996, Physical review letters.

[75]  M. Bawendi,et al.  CdSe nanocrystal based chem-/bio- sensors. , 2007, Chemical Society reviews.

[76]  Gaudenz Danuser,et al.  FRET or no FRET: a quantitative comparison. , 2003, Biophysical journal.

[77]  Walter H. Chang,et al.  Design of an amphiphilic polymer for nanoparticle coating and functionalization. , 2008, Small.

[78]  H. Weller,et al.  Luminescent energy transfer between cadmium telluride nanoparticle and lanthanide(III) chelate in competitive bioaffinity assays of biotin and estradiol. , 2007, Analytica chimica acta.

[79]  Hans-Gerd Löhmannsröben,et al.  Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay. , 2005, Angewandte Chemie.

[80]  Thomas A. Klar,et al.  Aqueous synthesis of thiol-capped CdTe nanocrystals : State-of-the-art , 2007 .

[81]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[82]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[83]  J. Lakowicz,et al.  Reviews in Fluorescence 2006 , 2006 .

[84]  Daniel Evanko,et al.  Bioluminescent quantum dots , 2006, Nature Methods.

[85]  Yuan-Cheng Cao,et al.  Fluorescence resonance energy transfer between FITC and water-soluble CdSe/ZnS quantum dots , 2007 .

[86]  Mark Green,et al.  Semiconductor quantum dots as biological imaging agents. , 2004, Angewandte Chemie.

[87]  Veli-Matti Mukkala,et al.  Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield , 1997 .

[88]  Igor L. Medintz,et al.  A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. , 2005, Journal of the American Chemical Society.

[89]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[90]  Huifeng Qian,et al.  A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). , 2006, Angewandte Chemie.

[91]  H. Löhmannsröben,et al.  Quantum Dot Nanocrystals and Supramolecular Lanthanide Complexes -Energy Transfer Systems for Sensitive In Vitro Diagnostics and High Throughput Screening in Chemical Biology , 2007 .

[92]  W. Horrocks,et al.  On correlating the frequency of the 7F0 → 5D0 transition in Eu3+ complexes with the sum of ‘nephelauxetic parameters’ for all of the coordinating atoms , 1995 .

[93]  Paul R Selvin,et al.  Principles and biophysical applications of lanthanide-based probes. , 2002, Annual review of biophysics and biomolecular structure.

[94]  F. Perrin Interaction entre atomes normal et activé. Transferts d'activation. Formation d'une molécule activée , 1933 .

[95]  Qiang Ma,et al.  Fluorescence resonance energy transfer between two quantum dots with immunocomplexes of antigen and antibody as a bridge. , 2007, Luminescence : the journal of biological and chemical luminescence.

[96]  D. Guldi,et al.  Zero- versus One-Dimensional Water-Soluble CdTe NanocrystalsSynthesis and Photophysical Characterization , 2007 .

[97]  S. Quici,et al.  Visible and near-infrared intense luminescence from water-soluble lanthanide [Tb(III), Eu(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), Er(III)] complexes. , 2005, Inorganic chemistry.