Lanthanide Complexes and Quantum Dots: A Bright Wedding for Resonance Energy Transfer
暂无分享,去创建一个
[1] J. Franck,et al. Über Zerlegung von Wasserstoffmolekülen durch angeregte Quecksilberatome , 1922 .
[2] Igor L. Medintz,et al. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.
[3] V. Raicu. Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins , 2007, Journal of biological physics.
[4] A fluorescence resonance energy transfer sensor based on maltose binding protein. , 2003 .
[5] Vincenzo Balzani,et al. ANTENNA EFFECT IN LUMINESCENT LANTHANIDE CRYPTATES: A PHOTOPHYSICAL STUDY , 1990 .
[6] Günther Carlo. Über Entstehung wahrer Lichtabsorption und scheinbare Koppelung von Quantensprüngen , 1922 .
[7] Th. Förster. Energiewanderung und Fluoreszenz , 1946 .
[8] M. El-Sayed,et al. Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.
[9] J. Bünzli,et al. Lanthanide Helicates Self-Assembled in Water: A New Class of Highly Stable and Luminescent Dimetallic Carboxylates , 1999 .
[10] Alfred Ehmert,et al. Ein einfaches Verfahren zur Messung kleinster Jodkonzentrationen, Jod- und Natriumthiosulfatmengen in Lösungen , 1949 .
[11] J E Hearst,et al. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[12] P. Selvin,et al. Thiol-reactive luminescent lanthanide chelates: part 2. , 2003, Bioconjugate chemistry.
[13] Gérard Mathis,et al. Energy Transfer Luminescence of Europium(III) and Terbium(III) Cryptates of Macrobicyclic Polypyridine Ligands , 1987 .
[14] J. Lakowicz. Principles of fluorescence spectroscopy , 1983 .
[15] P. Selvin,et al. Crystal Structure and Spectroscopic Characterization of a Luminescent Europium Chelate , 1996 .
[16] B. Meer,et al. Resonance Energy Transfer: Theory and Data , 1994 .
[17] Igor L. Medintz,et al. Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.
[18] Ilkka Hemmilä,et al. Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications , 1997 .
[19] S. Gambhir,et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.
[20] M. Tan,et al. A europium(III) complex as an efficient singlet oxygen luminescence probe. , 2006, Journal of the American Chemical Society.
[21] R. Ziessel,et al. Photophysical and structural impact of phosphorylated anions associated to lanthanide complexes in water. , 2005, Inorganic chemistry.
[22] Th. Förster. Ein Beitrag zur Theorie der Photosynthese , 1947 .
[23] F. Raymo,et al. Luminescent chemosensors based on semiconductor quantum dots. , 2007, Physical chemistry chemical physics : PCCP.
[24] P. Selvin,et al. Quantum yields of luminescent lanthanide chelates and far-red dyes measured by resonance energy transfer. , 2001, Journal of the American Chemical Society.
[25] B. Valeur,et al. Molecular Fluorescence: Principles and Applications , 2001 .
[26] Th. Förster. Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .
[27] A. Saha,et al. Time-resolved fluorescence of a new europium-chelate complex: demonstration of highly sensitive detection of protein and DNA samples , 1993 .
[28] B. Corry,et al. A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries. , 2005, Biophysical journal.
[29] Guilan Wang,et al. Lanthanide-based luminescence probes and time-resolved luminescence bioassays , 2006 .
[30] Igor L. Medintz,et al. Quantum-dot-based multiplexed fluorescence resonance energy transfer , 2005, SPIE BiOS.
[31] J. Bünzli,et al. Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.
[32] David L. Andrews,et al. Resonance Energy Transfer , 1999 .
[33] Hans-Gerd Löhmannsröben,et al. Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy. , 2006, Journal of the American Chemical Society.
[34] Igor L. Medintz,et al. Förster resonance energy transfer investigations using quantum-dot fluorophores. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.
[35] S. Nie,et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.
[36] Xiaogang Peng,et al. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .
[37] S. Connell,et al. Emission of 8Begs in the interaction of 12C with nuclei at incident energies up to 33 MeV/amu , 2001 .
[38] Willem Verboom,et al. UvA-DARE (Digital Academic Repository) New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexed luminescent lanthanide ions , 2001 .
[39] Jianghong Rao,et al. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. , 2007, Angewandte Chemie.
[40] J. Franck. Einige aus der Theorie von Klein und Bosseland zu ziehende Folgerungen über Fluoreszenz, photochemische Prozesse und die Elektronenemission glühender Körper , 1922 .
[41] V. Koistinen,et al. Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay , 1983, Nature.
[42] Q. Ma,et al. Fluorescence resonance energy transfer between two luminescent quantum dots using papain as a bridging molecule , 2007 .
[43] Igor L. Medintz,et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.
[44] S. Nie,et al. Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.
[45] S. Weissman,et al. Intramolecular Energy Transfer The Fluorescence of Complexes of Europium , 1942 .
[46] K. Akamatsu,et al. Band gap engineering of CdTe nanocrystals through chemical surface modification. , 2005, Journal of the American Chemical Society.
[47] T. Főrster,et al. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .
[48] Igor L. Medintz,et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.
[49] H. Bazin,et al. Homogeneous time resolved fluorescence resonance energy transfer using rare earth cryptates as a tool for probing molecular interactions in biology. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[50] E. Brunet,et al. Supramolecularly Organized Lanthanide Complexes for Efficient Metal Excitation and Luminescence as Sensors in Organic and Biological Applications , 2007 .
[51] Dale M. Willard,et al. CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay , 2001 .
[52] I. Hemmilä,et al. Luminescent lanthanide chelates—a way to more sensitive diagnostic methods , 1995 .
[53] A. Bettencourt-Dias. Small Molecule Luminescent Lanthanide Ion Complexes - Photophysical Characterization and Recent Developments , 2007 .
[54] M. Tan,et al. Synthesis and luminescence properties of lanthanide(III) chelates with polyacid derivatives of thienyl-substituted terpyridine analogues , 2004 .
[55] R. Ziessel,et al. Lanthanide tags for time-resolved luminescence microscopy displaying improved stability and optical properties. , 2001, Journal of the American Chemical Society.
[56] Massimo Guardigli,et al. Luminescent lanthanide complexes as photochemical supramolecular devices , 1993 .
[57] A. Grichine,et al. Long-lived two-photon excited luminescence of water-soluble europium complex: applications in biological imaging using two-photon scanning microscopy. , 2008, Journal of the American Chemical Society.
[58] Jean-Marie Lehn,et al. Photoactive cryptands. Synthesis of the sodium cryptates of macrobicyclic ligands containing bipyridine and phenoanthroline groups , 1984 .
[59] L. Brand,et al. Resonance energy transfer: methods and applications. , 1994, Analytical biochemistry.
[60] Qiang Ma,et al. Fluorescence resonance energy transfer in doubly-quantum dot labeled IgG system. , 2005, Talanta.
[61] Peter Reiss,et al. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .
[62] J. Beechem,et al. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores. , 2006, Analytical biochemistry.
[63] Igor L. Medintz,et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.
[64] Igor L. Medintz,et al. Quantum dot-based multiplexed fluorescence resonance energy transfer. , 2005 .
[65] Nicholas A. Kotov,et al. Albumin−CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect , 2001 .
[66] J. Kankare,et al. Development of Luminescent Europium(III) and Terbium(III) chelates of 2,2′:6′,2″‐ terpyridine derivatives for protein labelling , 1993 .
[67] S. G. Jones,et al. Improvements in the Sensitivity of Time Resolved Fluorescence Energy Transfer Assays , 2001, Journal of Fluorescence.
[68] Veli-Matti Mukkala,et al. Time-Resolution in Fluorometry Technologies, Labels, and Applications in Bioanalytical Assays , 2001 .
[69] Igor L. Medintz,et al. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? , 2005, Journal of the American Chemical Society.
[70] Aldo Roda,et al. Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging. , 2004, Journal of the American Chemical Society.
[71] M. Bruchez,et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.
[72] Vincent Noireaux,et al. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.
[73] H. Hakala,et al. Solid-phase synthesis of oligonucleotides labeled with luminescent lanthanide(III) chelates. , 2005, Bioconjugate chemistry.
[74] Cherie R. Kagan,et al. Electronic energy transfer in CdSe quantum dot solids. , 1996, Physical review letters.
[75] M. Bawendi,et al. CdSe nanocrystal based chem-/bio- sensors. , 2007, Chemical Society reviews.
[76] Gaudenz Danuser,et al. FRET or no FRET: a quantitative comparison. , 2003, Biophysical journal.
[77] Walter H. Chang,et al. Design of an amphiphilic polymer for nanoparticle coating and functionalization. , 2008, Small.
[78] H. Weller,et al. Luminescent energy transfer between cadmium telluride nanoparticle and lanthanide(III) chelate in competitive bioaffinity assays of biotin and estradiol. , 2007, Analytica chimica acta.
[79] Hans-Gerd Löhmannsröben,et al. Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay. , 2005, Angewandte Chemie.
[80] Thomas A. Klar,et al. Aqueous synthesis of thiol-capped CdTe nanocrystals : State-of-the-art , 2007 .
[81] Sanjiv S Gambhir,et al. Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.
[82] Andreas Kornowski,et al. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.
[83] J. Lakowicz,et al. Reviews in Fluorescence 2006 , 2006 .
[84] Daniel Evanko,et al. Bioluminescent quantum dots , 2006, Nature Methods.
[85] Yuan-Cheng Cao,et al. Fluorescence resonance energy transfer between FITC and water-soluble CdSe/ZnS quantum dots , 2007 .
[86] Mark Green,et al. Semiconductor quantum dots as biological imaging agents. , 2004, Angewandte Chemie.
[87] Veli-Matti Mukkala,et al. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield , 1997 .
[88] Igor L. Medintz,et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. , 2005, Journal of the American Chemical Society.
[89] M. Bawendi,et al. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .
[90] Huifeng Qian,et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). , 2006, Angewandte Chemie.
[91] H. Löhmannsröben,et al. Quantum Dot Nanocrystals and Supramolecular Lanthanide Complexes -Energy Transfer Systems for Sensitive In Vitro Diagnostics and High Throughput Screening in Chemical Biology , 2007 .
[92] W. Horrocks,et al. On correlating the frequency of the 7F0 → 5D0 transition in Eu3+ complexes with the sum of ‘nephelauxetic parameters’ for all of the coordinating atoms , 1995 .
[93] Paul R Selvin,et al. Principles and biophysical applications of lanthanide-based probes. , 2002, Annual review of biophysics and biomolecular structure.
[94] F. Perrin. Interaction entre atomes normal et activé. Transferts d'activation. Formation d'une molécule activée , 1933 .
[95] Qiang Ma,et al. Fluorescence resonance energy transfer between two quantum dots with immunocomplexes of antigen and antibody as a bridge. , 2007, Luminescence : the journal of biological and chemical luminescence.
[96] D. Guldi,et al. Zero- versus One-Dimensional Water-Soluble CdTe NanocrystalsSynthesis and Photophysical Characterization , 2007 .
[97] S. Quici,et al. Visible and near-infrared intense luminescence from water-soluble lanthanide [Tb(III), Eu(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), Er(III)] complexes. , 2005, Inorganic chemistry.