Dry-sliding tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy

[1]  Adhesive: , 2019, Field Guide.

[2]  Haiping Yu,et al.  Wear properties of nonhydrogenated, hydrogenated, and dehydrogenated Ti6Al4V alloy , 2018, Rare Metals.

[3]  Wei-min Liu,et al.  Tribological behavior of AlCoCrCuFeNi and AlCoCrFeNiTi0.5 high entropy alloys under hydrogen peroxide solution against different counterparts , 2015 .

[4]  Xiaolong Wang,et al.  Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy , 2015, Rare Metals.

[5]  Tongmin Wang,et al.  Wear behavior of high strength and high conductivity Cu alloys under dry sliding , 2015 .

[6]  Shu-qi Wang,et al.  Dry sliding wear performance of 7075 Al alloy under different temperatures and load conditions , 2015, Rare Metals.

[7]  Xiaotao Liu,et al.  Laser cladding of high-entropy alloy on H13 steel , 2014, Rare Metals.

[8]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[9]  Huijun Kang,et al.  A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys , 2014, Scientific Reports.

[10]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[11]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[12]  S. Guan,et al.  Microstructure and properties of Al0.3CrFe1.5MnNi0.5Tix and Al0.3CrFe1.5MnNi0.5Six high-entropy alloys , 2014, Rare Metals.

[13]  Qunfeng Zeng,et al.  Influence of Load and Sliding Speed on Super-Low Friction of Nitinol 60 Alloy under Castor Oil Lubrication , 2013, Tribology Letters.

[14]  Wei-min Liu,et al.  Effect of TiB2 on dry-sliding tribological properties of TiAl intermetallics , 2013 .

[15]  H. Duan,et al.  Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant , 2013 .

[16]  Wei-min Liu,et al.  Dry-sliding tribological behavior of Fe–Ni alloys , 2012 .

[17]  Yi Shi,et al.  Tribological Behaviors of Nanostructured Surface Layer Processed by Means of Surface Mechanical Attrition Treatment , 2008 .

[18]  Yusheng Zhang,et al.  Dry sliding wear behavior of copper with nano-scaled twins , 2007 .

[19]  Y. Zhou,et al.  Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties , 2007 .

[20]  Jien-Wei Yeh,et al.  Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content , 2006 .

[21]  Jien-Wei Yeh,et al.  Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy , 2006 .

[22]  J. Yeh,et al.  Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[23]  Wei-min Liu,et al.  Characterization of BCC phases in AlCoCrFeNiTix high entropy alloys , 2015 .

[24]  J. Li,et al.  Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution , 2013, Metallurgical and Materials Transactions A.

[25]  Haohuai Liu,et al.  Effects of deep cryogenic treatment on property of 3Cr13Mo1V1.5 high chromium cast iron , 2007 .

[26]  R. Colaço,et al.  On the influence of retained austenite in the abrasive wear behaviour of a laser surface melted tool steel , 2005 .

[27]  M. Ashby,et al.  Temperature Maps for Frictional Heating in Dry Sliding , 1991 .