Diffusion Approximations for the Constant Learning Rate Backpropagation Algorithm and Resistance to Local Minima
暂无分享,去创建一个
[1] John E. Moody,et al. Note on Learning Rate Schedules for Stochastic Optimization , 1990, NIPS.
[2] H. Kushner,et al. An Invariant Measure Approach to the Convergence of Stochastic Approximations with State Dependent Noise. , 1984 .
[3] Catherine Bouton. Approximation gaussienne d'algorithmes stochastiques à dynamique markovienne , 1988 .
[4] Pierre Priouret,et al. Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.
[5] H. White. Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models , 1989 .
[6] Kurt Hornik,et al. Convergence of learning algorithms with constant learning rates , 1991, IEEE Trans. Neural Networks.
[7] Ferdinand Hergert,et al. Improving model selection by nonconvergent methods , 1993, Neural Networks.
[8] M. Métivier,et al. Théorèmes de convergence presque sure pour une classe d'algorithmes stochastiques à pas décroissant , 1987 .
[9] P. Billingsley,et al. Convergence of Probability Measures , 1969 .
[10] Halbert White,et al. Learning in Artificial Neural Networks: A Statistical Perspective , 1989, Neural Computation.