Optimal green (red‐free) digital imaging of conjunctival vasculature

Aims/background: Green illumination is commonly used to image vessels of the retina and conjunctiva. The purpose was to derive the best optical set‐up for imaging vessels of the conjunctiva.

[1]  D. Weinberger,et al.  Digital red-free photography for the evaluation of retinal blood vessel displacement in epiretinal membrane. , 1999, Ophthalmology.

[2]  R. E. Jacobson,et al.  Optimal photographic imaging of the bulbar conjunctival vasculature , 1996, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[3]  Y Suzuki,et al.  Direct measurement of retinal vessel diameter: comparison with microdensitometric methods based on fundus photographs. , 1995, Survey of ophthalmology.

[4]  E. Kohner,et al.  Retinal blood flow changes during pregnancy in women with diabetes. , 1994, Investigative ophthalmology & visual science.

[5]  C. Chee,et al.  Vascular changes over trabeculectomy blebs , 1994, Eye.

[6]  E M Kohner,et al.  Accurate vessel width measurement from fundus photographs: a new concept. , 1994, The British journal of ophthalmology.

[7]  C. Riva,et al.  Retinal circulation during a spontaneous rise of intraocular pressure. , 1988, The British journal of ophthalmology.

[8]  B L Petrig,et al.  Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. , 1986, Archives of ophthalmology.

[9]  C W McMonnies,et al.  The Vascular Response to Contact Lens Wear , 1982, American journal of optometry and physiological optics.

[10]  Albert Macovski,et al.  Estimation Of Blood Vessel Boundaries In X-Ray Images , 1981, Other Conferences.

[11]  D. Bracher,et al.  Measurement of vessel width on fundus photographs , 1979, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[12]  F. Delori,et al.  Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus. , 1979, Archives of ophthalmology.

[13]  R C Pruett,et al.  Monochromatic ophthalmoscopy and fundus photography. The normal fundus. , 1977, Archives of ophthalmology.

[14]  R. E. Sturm,et al.  Fibre optic reflection photometry on blood. , 1968, Cardiovascular research.

[15]  W. T. Hanson,et al.  Subtractive Color Reproduction. The Approximate Reproduction of Selected Colors , 1949 .

[16]  J M Coggins,et al.  Automatic quantitative measurement of ocular hyperemia. , 1995, Current eye research.

[17]  E. Kohner,et al.  Vessel diameter changes during the cardiac cycle , 1994, Eye.

[18]  Ralph E. Jacobson,et al.  Determination and Enhancement of Image Contrast Using the Exposure Density Concept , 1994 .

[19]  Liang Zhou,et al.  The detection and quantification of retinopathy using digital angiograms , 1994, IEEE Trans. Medical Imaging.

[20]  Alfred L. Nuttall,et al.  Matched filter estimation of serial blood vessel diameters from video images , 1993, IEEE Trans. Medical Imaging.

[21]  P. Meyer The circulation of the human limbus , 1989, Eye.

[22]  M. Goldbaum,et al.  Detection of blood vessels in retinal images using two-dimensional matched filters. , 1989, IEEE transactions on medical imaging.

[23]  Jae S. Lim,et al.  A new method for estimation of coronary artery dimensions in angiograms , 1988, IEEE Trans. Acoust. Speech Signal Process..

[24]  Nielsen Nv The normal fundus fluorescein angiogram and the normal fundus photograph. An analysis of fundus fluorescein angiography, colour and filter photography of the posterior pole of the eye in clinically healthy subjects and in diabetics without obvious lesions ophthalmoscopically. , 1986 .

[25]  W G Zijlstra,et al.  Spectrophotometry of hemoglobin and hemoglobin derivatives. , 1983, Advances in clinical chemistry.