A GPGPU microarchitecture supports multi-path execution and branch compaction

[1]  Yimen Zhang,et al.  A Survey of GPGPU Parallel Processing Architecture Performance Optimization , 2021, 2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall).

[2]  Tor M. Aamodt,et al.  Analyzing Machine Learning Workloads Using a Detailed GPU Simulator , 2018, 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).

[3]  Won Woo Ro,et al.  Characterizing convolutional neural network workloads on a detailed GPU simulator , 2017, 2017 International SoC Design Conference (ISOCC).

[4]  Murali Annavaram,et al.  PATS: Pattern aware scheduling and power gating for GPGPUs , 2014, 2014 23rd International Conference on Parallel Architecture and Compilation (PACT).

[5]  Mike O'Connor,et al.  A scalable multi-path microarchitecture for efficient GPU control flow , 2014, 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA).

[6]  Nam Sung Kim,et al.  GPUWattch: enabling energy optimizations in GPGPUs , 2013, ISCA.

[7]  Mattan Erez,et al.  Maximizing SIMD resource utilization in GPGPUs with SIMD lane permutation , 2013, ISCA.

[8]  Mattan Erez,et al.  The dual-path execution model for efficient GPU control flow , 2013, 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA).

[9]  Mattan Erez,et al.  CAPRI: Prediction of compaction-adequacy for handling control-divergence in GPGPU architectures , 2012, 2012 39th Annual International Symposium on Computer Architecture (ISCA).

[10]  Onur Mutlu,et al.  Improving GPU performance via large warps and two-level warp scheduling , 2011, 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[11]  Tor M. Aamodt,et al.  Thread block compaction for efficient SIMT control flow , 2011, 2011 IEEE 17th International Symposium on High Performance Computer Architecture.

[12]  Kevin Skadron,et al.  Dynamic warp subdivision for integrated branch and memory divergence tolerance , 2010, ISCA.

[13]  Jung Ho Ahn,et al.  McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[14]  Kevin Skadron,et al.  Rodinia: A benchmark suite for heterogeneous computing , 2009, 2009 IEEE International Symposium on Workload Characterization (IISWC).

[15]  Henry Wong,et al.  Analyzing CUDA workloads using a detailed GPU simulator , 2009, 2009 IEEE International Symposium on Performance Analysis of Systems and Software.

[16]  Tor M. Aamodt,et al.  Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow , 2007, 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).