Multi-epoch spectropolarimetry of SN 2009ip: direct evidence for aspherical circumstellar material

We present spectropolarimetry of SN 2009ip throughout the evolution of its 2012 explosion. During the 2012a phase, when the spectrum exhibits broad P-Cygni lines, we measure a V-band polarization of P a parts per thousand 0.9 per cent at a position angle of theta a parts per thousand 166A degrees, indicating substantial asphericity for the 2012a outflow. Near the subsequent peak of the 2012b phase, when the spectrum shows signs of intense interaction with circumstellar material (CSM), we measure P a parts per thousand 1.7 per cent and theta a parts per thousand 72A degrees, indicating a separate component of polarization during 2012b, which exhibits a higher degree of asphericity than 2012a and an orthogonal axis of symmetry on the sky. Around 30 d past peak, coincident with a substantial bump in the declining light curve, we measure P a parts per thousand 0.7 per cent and another significant shift in theta. At this point, broad photospheric lines have again become prominent and exhibit significant variations in P relative to the continuum, particularly He i/Na iD. By 60 d past peak, the continuum polarization has dropped below 0.2 per cent, probably declining towards a low value of interstellar polarization. The results are consistent with a scenario in which a prolate (possibly bipolar) explosion launched during the 2012a phase impacts an oblate (toroidal) distribution of CSM in 2012b. Previous calculations that assumed spherical symmetry for the CSM have substantially underestimated the required explosion energy, since only a small fraction of the SN ejecta appears to have participated in strong CSM interaction. A kinetic energy of similar to 10(51) erg is difficult to avoid, supporting the interpretation that the 2012 outburst of SN 2009ip was the result of a core-collapse explosion.

[1]  F. Bianco,et al.  CLUES TO THE NATURE OF SN 2009ip FROM PHOTOMETRIC AND SPECTROSCOPIC EVOLUTION TO LATE TIMES , 2014, 1402.1765.

[2]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[3]  R. Margutti,et al.  A CLOSER LOOK AT THE FLUCTUATIONS IN THE BRIGHTNESS OF SN 2009IP DURING ITS LATE 2012 ERUPTION , 2013, 1308.3682.

[4]  J. Prieto,et al.  SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants , 2013, 1308.0112.

[5]  W. Arnett,et al.  PREPARING FOR AN EXPLOSION: HYDRODYNAMIC INSTABILITIES AND TURBULENCE IN PRESUPERNOVAE , 2013, 1307.5035.

[6]  A. Drake,et al.  DETECTION OF AN OUTBURST ONE YEAR PRIOR TO THE EXPLOSION OF SN 2011ht , 2013, 1309.4695.

[7]  M. Phillips,et al.  A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE , 2013, 1306.0038.

[8]  A. Udalski,et al.  The supergiant B[e] star LHA 115-S 18 – binary and/or luminous blue variable? , 2013, 1305.0459.

[9]  E. Ofek,et al.  SN 2009ip: CONSTRAINTS ON THE PROGENITOR MASS-LOSS RATE , 2013, 1303.3894.

[10]  R. Kotak,et al.  SN 2009ip à la PESSTO: no evidence for core collapse yet? , 2013, 1303.3453.

[11]  M. Kasliwal,et al.  Near-infrared spectroscopy of SN 2009ip's 2012 brightening reveals a dusty pre-supernova environment , 2013, 1303.0304.

[12]  E. Ofek,et al.  An outburst from a massive star 40 days before a supernova explosion , 2013, Nature.

[13]  A. Ginsburg,et al.  THE PECULIAR BALMER DECREMENT OF SN 2009ip: CONSTRAINTS ON CIRCUMSTELLAR GEOMETRY , 2012, 1211.4577.

[14]  M. L. Pumo,et al.  INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS: SN 2009ip, IS THIS THE END? , 2012, 1210.3568.

[15]  A. Drake,et al.  THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip , 2012, 1210.3347.

[16]  Kelsey I. Clubb,et al.  The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova , 2012, 1209.6320.

[17]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[18]  T. O. S. University,et al.  UNMASKING THE SUPERNOVA IMPOSTORS , 2012, 1202.0281.

[19]  T. Matheson,et al.  IT'S ALIVE! THE SUPERNOVA IMPOSTOR 1961V , 2011, 1112.0299.

[20]  N. Smith,et al.  Episodic mass loss in binary evolution to the Wolf–Rayet phase: Keck and HST proper motions of RY Scuti’s nebula★ , 2011, 1105.2329.

[21]  C. Kochanek,et al.  THE SUPERNOVA IMPOSTOR IMPOSTOR SN 1961V: SPITZER SHOWS THAT ZWICKY WAS RIGHT (AGAIN) , 2010, 1010.3704.

[22]  E. Berger,et al.  THE DIVERSITY OF MASSIVE STAR OUTBURSTS. I. OBSERVATIONS OF SN2009ip, UGC 2773 OT2009-1, AND THEIR PROGENITORS , 2010, 1002.0635.

[23]  N. Smith,et al.  Explosions triggered by violent binary–star collisions: application to Eta Carinae and other eruptive transients , 2010, 1010.3770.

[24]  Alexei V. Filippenko,et al.  Luminous blue variable eruptions and related transients: diversity of progenitors and outburst properties , 2010, 1010.3718.

[25]  R. Chornock,et al.  LARGE LATE-TIME ASPHERICITIES IN THREE TYPE IIP SUPERNOVAE , 2009, 0912.2465.

[26]  Jessica R. Lu,et al.  DISCOVERY OF PRECURSOR LUMINOUS BLUE VARIABLE OUTBURSTS IN TWO RECENT OPTICAL TRANSIENTS: THE FITFULLY VARIABLE MISSING LINKS UGC 2773-OT AND SN 2009ip , 2009, 0909.4792.

[27]  S. Gezari,et al.  SN 1994W: an interacting supernova or two interacting shells? , 2008, 0804.0428.

[28]  Lifan Wang,et al.  Spectropolarimetry of Supernovae , 2008, 0811.1054.

[29]  R. Foley,et al.  SN 2006tf: Precursor Eruptions and the Optically Thick Regime of Extremely Luminous Type IIn Supernovae , 2008, 0804.0042.

[30]  S. Smartt,et al.  Massive stars exploding in a He-rich circumstellar medium – II. The transitional case of SN 2005la , 2008, 0801.2278.

[31]  R. Chornock,et al.  The Dual-Axis Circumstellar Environment of the Type IIn Supernova 1997eg , 2007, 0709.3258.

[32]  N. Smith,et al.  And in the Darkness Bind Them: Equatorial Rings, B[e] Supergiants, and the Waists of Bipolar Nebulae , 2007, 0705.3054.

[33]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[34]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[35]  D. Fox,et al.  A non-spherical core in the explosion of supernova SN 2004dj , 2006, Nature.

[36]  R. Gruendl,et al.  The Nature of SN 1961V , 2004, astro-ph/0402473.

[37]  M. Rupen,et al.  SN 1993J VLBI. III. The Evolution of the Radio Shell , 2003, astro-ph/0307382.

[38]  D. Kasen,et al.  Analysis of the Flux and Polarization Spectra of the Type Ia Supernova SN 2001el: Exploring the Geometry of the High-Velocity Ejecta , 2003, astro-ph/0301312.

[39]  R. Chornock,et al.  Evidence for Extremely High Dust Polarization Efficiency in NGC 3184 , 2002, astro-ph/0208101.

[40]  N. Chugai Broad emission lines from the opaque electron‐scattering environment of SN 1998S , 2001, astro-ph/0106234.

[41]  D. Howell,et al.  Bipolar Supernova Explosions , 2001 .

[42]  A. Filippenko,et al.  Is It Round? Spectropolarimetry of the Type II-p Supernova 1999em , 2000, astro-ph/0009285.

[43]  M. Richmond,et al.  SN 1997bs in M66: Another Extragalactic η Carinae Analog? , 2000, astro-ph/0009027.

[44]  T. Matheson,et al.  Submitted to The Astrophysical Journal Evidence for Asphericity in the Type IIn Supernova 1998S , 1999 .

[45]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[46]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[47]  Berkeley,et al.  PROBING THE GEOMETRY AND CIRCUMSTELLAR ENVIRONMENT OF SN 1993J IN M81 , 1997, astro-ph/9703134.

[48]  D. Arnett,et al.  Supernovae and Nucleosynthesis , 1996 .

[49]  J. Wheeler,et al.  Analysis of the polarization and flux spectra of SN 1993J , 1995, astro-ph/9510031.

[50]  L. Ho,et al.  Was Fritz Zwicky's "Type V" SN 1961V a Genuine Supernova? , 1995 .

[51]  P. Hoeflich Remarks on the Polarization Observed in SN 1993J , 1995 .

[52]  N. Panagia,et al.  SN 1993J: The early radio emission and evidence for a changing presupernova mass-loss rate , 1994 .

[53]  J. Grove,et al.  Hard X-rays from SN 1993J , 1994 .

[54]  N. Chugai,et al.  SN 1988Z: low-mass ejecta colliding with the clumpy wind? , 1994 .

[55]  R. Chevalier,et al.  Emission from circumstellar interaction in normal Type II supernovae , 1994 .

[56]  J. Wheeler,et al.  Spectropolarimetry of SN 1993J in NGC 3031 , 1993 .

[57]  Paul S. Smith,et al.  Discovery of a sub-megagauss magnetic white dwarf through spectropolarimetry , 1992 .

[58]  G. Schmidt,et al.  The Hubble Space Telescope Northern-Hemisphere Grid of Stellar Polarimetric Standards , 1992 .

[59]  E. Schlegel A new subclass of Type II supernovae , 1990 .

[60]  Lloyd B. Robinson,et al.  Instrumentation for Ground-Based Optical Astronomy , 1988 .

[61]  R. Goodrich,et al.  A CCD Spectropolarimeter for the Lick Observatory 3-Meter Telescope , 1988 .

[62]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .