Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration.

An ultra-compact electro-absorption (EA) modulator operating around 1.55-μm telecom wavelengths is proposed and theoretically investigated. The modulator is comprised of a stack of TiN/HfO2</ITO/Cu conformally deposited on a single-mode stripe waveguide to form a hybrid plasmonic waveguide (HPW). Since the thin ITO layer can behave as a semiconductor, the stack itself forms a MOS capacitor. A voltage is applied between the Cu and TiN layers to change the electron concentration of ITO (NITO), which in turn changes its permittivity as well as the propagation loss of HPW. For a HPW comprised of a Cu/3-nm-ITO/5-nm-HfO2/5-nm-TiN stack on a 400-nm × 340-nm-Si stripe waveguide, the propagation loss for the 1.55-μm TE (TM) mode increases from 1.6 (1.4) to 23.2 (23.9) dB/μm when the average NITO in the 3-nm ITO layer increases from 2 × 10(20) to 7 × 10(20) cm(-3), which is achieved by varying the voltage from -2 to 4 V if the initial NITO is 3.5 × 10(20) cm(-3). As a result, a 1-μm-long EA modulator inserted in the 400-nm × 340-nm-Si stripe waveguide exhibits insertion loss of 2.9 (3.2) dB and modulation depth of 19.9 (15.2) dB for the TE (TM) mode. The modulation speed is ~11 GHz, limited by the RC delay, and the energy consumption is ~0.4 pJ/bit. The stack can also be deposited on a low-index-contrast waveguide such as Si3N4. For example, a 4-μm-long EA modulator inserted in an 800-nm × 600-nm-Si3N4 stripe waveguide exhibits insertion loss of 6.3 (3.5) dB and modulation depth of 16.5 (15.8) dB for the TE (TM) mode. The influences of the ITO, TiN, HfO2 layers and the beneath dielectric core, as well as the processing tolerance, on the performance of the proposed EA modulator are systematically investigated.

[1]  Michal Lipson,et al.  Scalable 3D dense integration of photonics on bulk silicon. , 2011, Optics express.

[2]  A. Zayats,et al.  Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. , 2012, Physical review letters.

[3]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[4]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[5]  Shiyang Zhu,et al.  Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides , 2011 .

[6]  Paul Crozat,et al.  Recent Progress in High-Speed Silicon-Based Optical Modulators , 2009, Proceedings of the IEEE.

[7]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[8]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[9]  Ping Zhang,et al.  Flexible integrated photonics: where materials, mechanics and optics meet [Invited] , 2013 .

[10]  Vladimir M. Shalaev,et al.  Ultra-compact modulators based on novel CMOS-compatible plasmonic materials , 2013 .

[11]  Viktoriia E. Babicheva,et al.  Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. , 2013, Optics express.

[12]  S. Roberts Optical Properties of Copper , 1960 .

[13]  T. Vallaitis,et al.  A surface plasmon polariton absorption modulator , 2010 .

[14]  Junghyun Park,et al.  Electro-optical modulation of a silicon waveguide with an "epsilon-near-zero" material. , 2013, Optics express.

[15]  K. MacDonald,et al.  Active plasmonics: current status , 2010 .

[16]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[17]  Shiyang Zhu,et al.  Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. , 2011, Optics express.

[18]  J. Hupp,et al.  Atomic Layer Deposition of Indium Tin Oxide Thin Films Using Nonhalogenated Precursors , 2008 .

[19]  Guo-Qiang Lo,et al.  Experimental Demonstration of Vertical ${\rm Cu}\hbox{-}{\rm SiO}_{2}\hbox{-}{\rm Si}$ Hybrid Plasmonic Waveguide Components on an SOI Platform , 2012, IEEE Photonics Technology Letters.

[20]  L. Dominici,et al.  Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm. , 2009, Optics letters.

[21]  Shiyang Zhu,et al.  Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides. , 2013, Optics express.

[22]  Keren Bergman,et al.  Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors , 2011, JETC.

[23]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[24]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[25]  Wangshi Zhao,et al.  Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides , 2012, IEEE Photonics Journal.

[26]  Shiyang Zhu,et al.  Silicon nitride based plasmonic components for CMOS back-end-of-line integration. , 2013, Optics express.

[27]  David A B Miller,et al.  Energy consumption in optical modulators for interconnects. , 2012, Optics express.

[28]  W. Kim,et al.  Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3 , 2002 .