Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime

We consider the nonlinear massless wave equation belonging to some family of the Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. We prove the global in time small data solutions for supercritical powers in the case of decelerating expansion universe.

[1]  K. Tsutaya,et al.  On heatlike lifespan of solutions of semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime , 2021, Journal of Mathematical Analysis and Applications.

[2]  A. Palmieri Blow-up results for semilinear damped wave equations in Einstein–de Sitter spacetime , 2020, Zeitschrift für angewandte Mathematik und Physik.

[3]  K. Tsutaya,et al.  Blow up of solutions of semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime , 2020 .

[4]  M. D’Abbicco The semilinear Euler-Poisson-Darboux equation: a case of wave with critical dissipation , 2020, 2008.08703.

[5]  M. Reissig,et al.  Semi‐linear wave models with power non‐linearity and scale‐invariant time‐dependent mass and dissipation, II , 2018 .

[6]  J. Costa,et al.  Decay of solutions of the wave equation in expanding cosmological spacetimes , 2018, Journal of Hyperbolic Differential Equations.

[7]  M. Ikeda,et al.  Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data , 2017, Mathematische Annalen.

[8]  M. D’Abbicco,et al.  Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation , 2017 .

[9]  K. Yagdjian,et al.  Finite lifespan of solutions of the semilinear wave equation in the Einstein–de Sitter spacetime , 2016, Reviews in Mathematical Physics.

[10]  M. Reissig,et al.  Theory of damped wave models with integrable and decaying in time speed of propagation , 2016 .

[11]  Michael Reissig,et al.  A shift in the Strauss exponent for semilinear wave equations with a not effective damping , 2015 .

[12]  M. D’Abbicco,et al.  NLWE with a special scale invariant damping in odd space dimension , 2015 .

[13]  B. Abbasi,et al.  On the initial value problem for the wave equation in Friedmann–Robertson–Walker space–times , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  K. Yagdjian,et al.  Global solutions for semilinear Klein-Gordon equations in FLRW spacetimes , 2014, 1401.3822.

[15]  M. D’Abbicco,et al.  A Modified Test Function Method for Damped Wave Equations , 2013 .

[16]  Marcello D'Abbicco,et al.  The Threshold between Effective and Noneffective Damping for Semilinear Waves , 2012, 1211.0731.

[17]  Baoxiang Wang,et al.  Necessary and Sufficient Conditions for the Fractional Gagliardo-Nirenberg Inequalities and Applications to Navier-Stokes and Generalized Boson Equations (Harmonic Analysis and Nonlinear Partial Differential Equations) , 2011 .

[18]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[19]  K. Yagdjian,et al.  A note on wave equation in Einstein and de Sitter space-time , 2009, 0908.1196.

[20]  Loukas Grafakos,et al.  Modern Fourier Analysis , 2008 .

[21]  Jens Wirth,et al.  Wave equations with time-dependent dissipation II. Effective dissipation , 2006 .

[22]  J. Wirth Solution representations for a wave equation with weak dissipation , 2002, math/0210030.

[23]  Masahito Ohta,et al.  Critical exponents for semilinear dissipative wave equations in RN , 2002 .

[24]  Hans Lindblad,et al.  Weighted Strichartz estimates and global existence for semilinear wave equations , 1997, math/9912206.

[25]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[26]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .

[27]  M. R. Ebert,et al.  Critical Exponent for a Class of Semilinear Damped Wave Equations with Decaying in Time Propagation Speed , 2020 .

[28]  M. Reissig,et al.  The Interplay Between Time-dependent Speed of Propagation and Dissipation in Wave Models , 2014 .

[29]  H. Fujita On the blowing up of solutions fo the Cauchy problem for u_t=Δu+u^ , 1966 .

[30]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.