Spectral-Efficient Hybrid Dimming Scheme for Indoor Visible Light Communication: A Subcarrier Index Modulation Based Approach

Communication and illumination are two basic functions of the indoor visible light communication (VLC). In this paper, a novel spectral-efficient hybrid dimming scheme is proposed for the indoor VLC system, where the frequency-domain subcarrier selection is utilized to maximize the channel capacity and the intensity-domain dimming strategy is used to further adjust the illumination level. Simulations are carried out in both the indoor line-of-sight channel and the indoor multipath channel. Simulation results substantiate the superior performance of the proposed hybrid dimming scheme over the state-of-the-art schemes.

[1]  Ertugrul Basar,et al.  Index modulation techniques for 5G wireless networks , 2016, IEEE Communications Magazine.

[2]  Zabih Ghassemlooy,et al.  Optical Wireless Communications: System and Channel Modelling with MATLAB® , 2012 .

[3]  H. Vincent Poor,et al.  Orthogonal Frequency Division Multiplexing With Index Modulation , 2012, IEEE Transactions on Signal Processing.

[4]  Harald Haas,et al.  On the superposition modulation for OFDM-based optical wireless communication , 2015, 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[5]  Zabih Ghassemlooy,et al.  Emerging Optical Wireless Communications-Advances and Challenges , 2015, IEEE Journal on Selected Areas in Communications.

[6]  Raed Mesleh,et al.  Information-Theoretic Treatment of Space Modulation MIMO Systems , 2018, IEEE Transactions on Vehicular Technology.

[7]  Jean-Paul M. G. Linnartz,et al.  An illumination perspective on visible light communications , 2014, IEEE Communications Magazine.

[8]  Xiang Cheng,et al.  On the Achievable Rate of OFDM With Index Modulation , 2016, IEEE Transactions on Signal Processing.

[9]  Kwonhyung Lee,et al.  Modulations for Visible Light Communications With Dimming Control , 2011, IEEE Photonics Technology Letters.

[10]  Erdal Panayirci,et al.  Optical OFDM with index modulation for visible light communications , 2015, 2015 4th International Workshop on Optical Wireless Communications (IWOW).

[11]  Harald Haas,et al.  Index Modulation Techniques for Next-Generation Wireless Networks , 2017, IEEE Access.

[12]  Fang Yang,et al.  Comparison of Hybrid Optical Modulation Schemes for Visible Light Communication , 2017, IEEE Photonics Journal.

[13]  Kamran Kiasaleh,et al.  Subcarrier-Index Modulation for Reed Solomon Encoded OFDM-Based Visible Light Communication , 2019, 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC).

[14]  Fang Yang,et al.  Adaptive LACO-OFDM With Variable Layer for Visible Light Communication , 2017, IEEE Photonics Journal.

[15]  Harald Haas,et al.  Enhanced subcarrier index modulation (SIM) OFDM , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[16]  J. Armstrong,et al.  OFDM for Optical Communications , 2009, Journal of Lightwave Technology.

[17]  Harald Haas,et al.  Spectrally enhanced PAM-DMT for IM/DD optical wireless communications , 2015, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[18]  J. Kwon Inverse Source Coding for Dimming in Visible Light Communications Using NRZ-OOK on Reliable Links , 2010, IEEE Photonics Technology Letters.

[19]  Thomas D. C. Little,et al.  SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[20]  Stefan Videv,et al.  Unlocking Spectral Efficiency in Intensity Modulation and Direct Detection Systems , 2015, IEEE Journal on Selected Areas in Communications.

[21]  Harald Haas,et al.  Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications. , 2016, Optics express.

[22]  Harald Haas,et al.  Subcarrier-index modulation OFDM , 2009, 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.

[23]  Harald Haas,et al.  Area spectral efficiency performance comparison between VLC and RF femtocell networks , 2013, 2013 IEEE International Conference on Communications (ICC).

[24]  Zhaocheng Wang,et al.  Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission. , 2015, Optics express.

[25]  Sung-Yoon Jung,et al.  Modulation and coding for dimmable visible light communication , 2015, IEEE Communications Magazine.

[26]  Edward A. Lee,et al.  Simulation of Multipath Impulse Response for Indoor Wireless Optical Channels , 1993, IEEE J. Sel. Areas Commun..

[27]  J. Armstrong,et al.  Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems , 2013, Journal of Lightwave Technology.

[28]  Yang Yang,et al.  An Enhanced DCO-OFDM Scheme for Dimming Control in Visible Light Communication Systems , 2016, IEEE Photonics Journal.

[29]  Joseph M. Kahn,et al.  Multiple-Subcarrier Modulation for Nondirected Wireless Infrared Communication , 1994, IEEE J. Sel. Areas Commun..

[30]  Arthur James Lowery Enhanced asymmetrically-clipped optical OFDM , 2015, ArXiv.

[31]  Murat Uysal,et al.  Channel Modeling and Characterization for Visible Light Communications , 2015, IEEE Photonics Journal.

[32]  John R. Barry,et al.  Indoor Channel Characteristics for Visible Light Communications , 2011, IEEE Commun. Lett..

[33]  Jean Armstrong,et al.  Power efficient optical OFDM , 2006 .

[34]  Linglong Dai,et al.  Dimmable Visible Light Communications Based on Multilayer ACO-OFDM , 2016, IEEE Photonics Journal.

[35]  Harald Haas,et al.  Optical MIMO-OFDM With Generalized LED Index Modulation , 2017, IEEE Transactions on Communications.

[36]  Joseph M. Kahn,et al.  Experimental characterization of non-directed indoor infrared channels , 1995, IEEE Trans. Commun..