Evidence for a Posterior Parietal Cortex Contribution to Spatial but not Temporal Numerosity Perception.

Posterior parietal cortex (PPC) is thought to encode and represent the number of objects in a visual scene (i.e., numerosity). Whether this representation is shared for simultaneous and sequential stimuli (i.e., mode independency) is debated. We tested the existence of a common neural substrate for the encoding of these modes using fMRI. While both modes elicited overlapping BOLD response in occipital areas, only simultaneous numerosities significantly activated PPC. Unique activation for sequential numerosities was found in bilateral temporal areas. Multivoxel pattern analysis revealed numerosity selectivity in PPC only for simultaneous numerosities and revealed differential encoding of presentation modes. Voxel-wise numerosity tuning functions for simultaneous numerosities in occipital and parietal ROIs revealed increasing numerosity selectivity along an occipito-to-parietal gradient. Our results suggest that the parietal cortex is involved in the extraction of spatial but not temporal numerosity and question the idea of commonly used cortical circuits for a mode-independent numerosity representation.

[1]  I. Murakami,et al.  Neural Correlates of Induced Motion Perception in the Human Brain , 2012, The Journal of Neuroscience.

[2]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[3]  Andreas Nieder,et al.  Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices , 2012, Proceedings of the National Academy of Sciences.

[4]  M. Raichle,et al.  On the existence of a generalized non-specific task-dependent network , 2015, Front. Hum. Neurosci..

[5]  Timothy Edward John Behrens,et al.  Response-Selection-Related Parietal Activation during Number Comparison , 2004, Journal of Cognitive Neuroscience.

[6]  Michael Andres,et al.  Mode-dependent and mode-independent representations of numerosity in the right intraparietal sulcus , 2010, NeuroImage.

[7]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[8]  David C. Burr,et al.  The effects of cross-sensory attentional demand on subitizing and on mapping number onto space , 2012, Vision Research.

[9]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.

[10]  Felix Blankenburg,et al.  Parametric Alpha- and Beta-Band Signatures of Supramodal Numerosity Information in Human Working Memory , 2014, The Journal of Neuroscience.

[11]  Stanislas Dehaene,et al.  Arithmetic and the Brain This Review Comes from a Themed Issue on Cognitive Neuroscience Edited the Intraparietal Sulcus and Number Sense Number Sense in the Animal Brain , 2022 .

[12]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[13]  Bingni W. Brunton,et al.  Distinct relationships of parietal and prefrontal cortices to evidence accumulation , 2014, Nature.

[14]  R. Cohen Kadosh,et al.  Numerical representation in the parietal lobes: abstract or not abstract? , 2009, The Behavioral and brain sciences.

[15]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  B. Thirion,et al.  Fast reproducible identification and large-scale databasing of individual functional cognitive networks , 2007, BMC Neuroscience.

[17]  Karl J. Friston,et al.  Stochastic Designs in Event-Related fMRI , 1999, NeuroImage.

[18]  N. Kanwisher,et al.  Numerical Magnitude in the Human Parietal Lobe Tests of Representational Generality and Domain Specificity , 2004, Neuron.

[19]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[20]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[21]  Wim Fias,et al.  Stages of Nonsymbolic Number Processing in Occipitoparietal Cortex Disentangled by fMRI Adaptation , 2011, The Journal of Neuroscience.

[22]  M. Chun,et al.  Dissociable neural mechanisms supporting visual short-term memory for objects , 2006, Nature.

[23]  W. Ma,et al.  Changing concepts of working memory , 2014, Nature Neuroscience.

[24]  J. Bulthé,et al.  Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses , 2014, NeuroImage.

[25]  Bert De Smedt,et al.  Visual Number Beats Abstract Numerical Magnitude: Format-dependent Representation of Arabic Digits and Dot Patterns in Human Parietal Cortex , 2015, Journal of Cognitive Neuroscience.

[26]  A. Henik,et al.  The contribution of fish studies to the “number sense” debate , 2016, Behavioral and Brain Sciences.

[27]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[28]  David C. Burr,et al.  Separate Mechanisms for Perception of Numerosity and Density , 2014, Psychological science.

[29]  Stephan E. Vogel,et al.  The effect of visual parameters on neural activation during nonsymbolic number comparison and its relation to math competency , 2017, NeuroImage.

[30]  Kathrin Tertel,et al.  Overlapping frontoparietal networks for tactile and visual parametric working memory representations , 2018, NeuroImage.

[31]  Andreas Nieder,et al.  Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex , 2007, Proceedings of the National Academy of Sciences.

[32]  Darren J. Yeo,et al.  The relation between 1st grade grey matter volume and 2nd grade math competence , 2016, NeuroImage.

[33]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[34]  D. Melcher,et al.  Subitizing reflects visuo-spatial object individuation capacity , 2011, Cognition.

[35]  Brian Butterworth,et al.  Are Subitizing and Counting Implemented as Separate or Functionally Overlapping Processes? , 2002, NeuroImage.

[36]  Jochen Ditterich,et al.  Splash: A Software Tool for Stereotactic Planning of Recording Chamber Placement and Electrode Trajectories , 2011, Front. Neuroinform..

[37]  Bertrand Thirion,et al.  Deciphering Cortical Number Coding from Human Brain Activity Patterns , 2009, Current Biology.

[38]  Maureen A. Hagan,et al.  Only Coherent Spiking in Posterior Parietal Cortex Coordinates Looking and Reaching , 2012, Neuron.

[39]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[40]  M. Pesenti,et al.  Numerosity-duration interference: a Stroop experiment. , 2006, Acta psychologica.

[41]  B. Postle,et al.  Superior Parietal Cortex Is Critical for the Manipulation of Information in Working Memory , 2009, The Journal of Neuroscience.

[42]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[43]  S Dehaene,et al.  Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex. , 2015, Cerebral cortex.

[44]  John C Gore,et al.  The role of the parietal cortex in visual feature binding , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Cohen Kadosh,et al.  Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. , 2016, Acta psychologica.

[46]  David Melcher,et al.  A Shared, Flexible Neural Map Architecture Reflects Capacity Limits in Both Visual Short-Term Memory and Enumeration , 2014, The Journal of Neuroscience.

[47]  Brian Butterworth,et al.  Exact and Approximate Judgements of Visual and Auditory Numerosity: an Fmri Study , 2006 .

[48]  David C. Burr,et al.  A generalized sense of number , 2014, Proceedings of the Royal Society B: Biological Sciences.

[49]  Bert Reynvoet,et al.  The interplay between nonsymbolic number and its continuous visual properties. , 2012, Journal of experimental psychology. General.

[50]  Marco Zorzi,et al.  Emergence of a 'visual number sense' in hierarchical generative models , 2012, Nature Neuroscience.

[51]  A. Kleinschmidt,et al.  A Supramodal Number Representation in Human Intraparietal Cortex , 2003, Neuron.

[52]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[53]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[54]  Stanislas Dehaene,et al.  PSYCHOLOGICAL SCIENCE Research Article Does Subitizing Reflect Numerical Estimation? , 2022 .

[55]  Roberto Arrighi,et al.  Spatial but Not Temporal Numerosity Thresholds Correlate With Formal Math Skills in Children , 2017, Developmental psychology.

[56]  Martin N. Hebart,et al.  The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data , 2015, Front. Neuroinform..

[57]  S. Dehaene,et al.  Representation of Numerical and Sequential Patterns in Macaque and Human Brains , 2015, Current Biology.

[58]  David C. Burr,et al.  Effects of adaptation on numerosity decoding in the human brain , 2016, NeuroImage.

[59]  Bert Reynvoet,et al.  The Role of Visual Information in Numerosity Estimation , 2012, PloS one.

[60]  Sarah Shomstein,et al.  Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control , 2012, Front. Integr. Neurosci..

[61]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[62]  Joseph A Maldjian,et al.  Precentral gyrus discrepancy in electronic versions of the Talairach atlas , 2004, NeuroImage.

[63]  Brian Butterworth,et al.  Discrete and analogue quantity processing in the parietal lobe: a functional MRI study. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Jonathan W. Pillow,et al.  Dissociated functional significance of decision-related activity in the primate dorsal stream , 2016, Nature.

[65]  Nelson Cowan,et al.  Domain-general and domain-specific functional networks in working memory , 2014, NeuroImage.

[66]  S. Dehaene,et al.  A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex , 2007, Neuron.

[67]  M. Husain,et al.  Role of right posterior parietal cortex in maintaining attention to spatial locations over time , 2009, Brain : a journal of neurology.

[68]  Miranda Scolari,et al.  Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions , 2009, NeuroImage.

[69]  Andreas Nieder,et al.  Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex , 2006, Science.

[70]  Curren Katz,et al.  Dissociating estimation from comparison and response eliminates parietal involvement in sequential numerosity perception , 2015, NeuroImage.

[71]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[72]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[73]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[74]  David C Burr,et al.  Subitizing but not estimation of numerosity requires attentional resources. , 2010, Journal of vision.

[75]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Birgitta Dresp 39th European Conference on Visual Perception (ECVP) 2016 Barcelona , 2016 .

[77]  Midori Tokita,et al.  Temporal information affects the performance of numerosity discrimination: Behavioral evidence for a shared system for numerosity and temporal processing , 2011, Psychonomic bulletin & review.

[78]  Guido Marco Cicchini,et al.  Number As a Primary Perceptual Attribute: A Review , 2016, Perception.

[79]  Pooja Viswanathan,et al.  Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices , 2013, Proceedings of the National Academy of Sciences.

[80]  Wim Fias,et al.  Representation of Number in Animals and Humans: A Neural Model , 2004, Journal of Cognitive Neuroscience.

[81]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.