A Highly Reversible Lithium Metal Anode

[1]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[2]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[3]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[4]  M. Ue Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ‐Butyrolactone , 1994 .

[5]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[6]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[7]  Saito,et al.  Aggregation growth in a gas of finite density: Velocity selection via fractal dimension of diffusion-limited aggregation. , 1989, Physical review. A, General physics.

[8]  D. Wilkinson,et al.  Effects of physical constraints on Li cyclability , 1991 .

[9]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[10]  C. Capiglia,et al.  Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes , 1999 .

[11]  E. Eweka,et al.  Electrolytes and additives for high efficiency lithium cycling , 1997 .

[12]  Seokgwang Doo,et al.  Topmost Atomistic Li Structures and Native Point Defects in the Li (001) Surface , 2011 .

[13]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[14]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[15]  Maria E. Gamboa-Adelco,et al.  Ion Transport in Solutions , 2001 .

[16]  R. Messina,et al.  Behavior of lithium-electrolyte interface during cycling in some ether-carbonate and carbonate mixtures , 1995 .

[17]  Martin Winter,et al.  Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries , 2001 .

[18]  J. Yamaki,et al.  Influence of Electrolyte on Lithium Cycling Efficiency with Pressurized Electrode Stack , 1994 .

[19]  S. Seki,et al.  Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. , 2011, Journal of the American Chemical Society.

[20]  G. Blomgren Physical and Chemical Properties of Nonaqueous Electrolyte Solutions , 1999 .

[21]  Bruno Scrosati,et al.  Impedance Spectroscopy Study of PEO‐Based Nanocomposite Polymer Electrolytes , 2000 .

[22]  H. Ota,et al.  Characterization of Lithium Electrode in Lithium Imides/Ethylene Carbonate, and Cyclic Ether Electrolytes I. Surface Morphology and Lithium Cycling Efficiency , 2004 .

[23]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[24]  H. Ota,et al.  Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes. II. Surface chemistry , 2004 .

[25]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[26]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[27]  Emmanuel P. Giannelis,et al.  Polymer Layered Silicate Nanocomposites , 1996 .

[28]  Matthew D. Murbach ECS@UW Notes on Bard’s Electrochemical Methods Chapter 2: Potentials and Thermodynamics of Cells , 2016 .

[29]  L. Hong,et al.  In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes , 2004 .

[30]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[31]  Tao Zhang,et al.  Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li , 2010 .

[32]  C. E. Tracy,et al.  Lithium Thin-Film Battery with a Reversed Structural Configuration SS / Li / Lipon / Li x V 2 O 5 / Cu , 2003 .

[33]  T. Abe,et al.  Suppression of dendritic lithium formation by using concentrated electrolyte solutions , 2008 .

[34]  Doron Aurbach,et al.  Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems , 1995 .

[35]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[36]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[37]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[38]  Pierre-Louis Taberna,et al.  Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors , 2009 .

[39]  B. Dunn,et al.  Protection of lithium metal surfaces using tetraethoxysilane , 2011 .

[40]  Anthony F. Hollenkamp,et al.  High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid , 2004 .