High order data sharpening for density estimation

It is shown that data sharpening can be used to produce density estimators that enjoy arbitrarily high orders of bias reduction. Practical advantages of this approach, relative to competing methods, are demonstrated. They include the sheer simplicity of the estimators, which makes code for computing them particularly easy to write, very good mean‐squared error performance, reduced `wiggliness' of estimates and greater robustness against undersmoothing.

[1]  David Ruppert,et al.  Asymptotics for the Transformation Kernel Density Estimator , 1995 .

[2]  O. Hössjer Asymptotic bias and variance for a general class of varying bandwidth density estimators , 1996 .

[3]  P. Hall,et al.  Data sharpening as a prelude to density estimation , 1999 .

[4]  Jens Perch Nielsen,et al.  A simple bias reduction method for density estimation , 1995 .

[5]  L. Ahrens,et al.  Observations on the Fe-Si-Mg relationship in chondrites , 1965 .

[6]  Ingrid K. Glad,et al.  Correction of Density Estimators that are not Densities , 2003 .

[7]  Ian Abramson Adaptive Density Flattening--A Metric Distortion Principle for Combating Bias in Nearest Neighbor Methods , 1984 .

[8]  M. C. Jones,et al.  Locally parametric nonparametric density estimation , 1996 .

[9]  J. Simonoff Three Sides of Smoothing: Categorical Data Smoothing, Nonparametric Regression, and Density Estimation , 1998 .

[10]  Frank Proschan,et al.  Generalized Association, with Applications in Multivariate Statistics , 1981 .

[11]  David Ruppert,et al.  Bias reduction in kernel density estimation by smoothed empirical transformations , 1994 .

[12]  J. B. Copas,et al.  Local Likelihood Based on Kernel Censoring , 1995 .

[13]  Peter Hall,et al.  On bias reduction in local linear smoothing , 1998 .

[14]  M. Samiuddin,et al.  On nonparametric kernel density estimates , 1990 .

[15]  C. Loader Local Likelihood Density Estimation , 1996 .

[16]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[17]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[18]  M. C. Jones,et al.  A Comparison of Higher-Order Bias Kernel Density Estimators , 1997 .