Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid

The yellow-green alga Trachydiscus minutus (class Xanthophyta) was cultivated in a standard medium and in media without sulfur and nitrogen. Its yield after a 16-d cultivation reached 13 g dry mass per 1 L medium. The content of oligoenoic (‘polyenoic’) fatty acid (PUFA), i.e. eicosapentaenoic (EPA), was in excess of 35 % of total fatty acids; the productivity was thus 88 mg/L per d. This result makes the alga a very prospective organism that may serve as a new biotechnological source of single cell oil.

[1]  T. Tonon,et al.  Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. , 2002, Phytochemistry.

[2]  P. Broady,et al.  Phylogeny and taxonomy of Xanthophyceae (Stramenopiles, Chromalveolata). , 2009, Protist.

[3]  K. Ohtaguchi,et al.  Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga porphyridium cruentum , 1998 .

[4]  Zhengyu Hu,et al.  Enhancement of eicosapentaenoic acid (EPA) and γ-linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria) , 1997 .

[5]  A. Otero,et al.  Manipulation of the biochemical composition of the eicosapentaenoic acid‐rich microalga Isochrysis galbana in semicontinuous cultures , 1997 .

[6]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[7]  A. Simopoulos,et al.  The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases , 2008, Experimental biology and medicine.

[8]  G. C. Zittelli,et al.  Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors , 1999 .

[9]  Z. Wen,et al.  A perfusion–cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis , 2001, Applied Microbiology and Biotechnology.

[10]  J. Doucha,et al.  Macromolecular syntheses and the course of cell cycle events in the chlorococcal algaScenedesmus quadricauda under nutrient starvation: Effect of phosphorus starvation , 2008, Biologia Plantarum.

[11]  H. R. Gislerød,et al.  Fatty acid composition of 12 microalgae for possible use in aquaculture feed , 2007, Aquaculture International.

[12]  Z. Cohen Production potential of eicosapentaenoic acid byMonodus subterraneus , 1994 .

[13]  O. Ward,et al.  Growth and eicosapentaenoic acid production byPhaeodactylum tricornutum in batch and continuous culture systems , 1992 .

[14]  F. G. Fernández,et al.  Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture , 1994, Applied Microbiology and Biotechnology.

[15]  E. Molina Grima,et al.  Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile , 2000, Journal of Applied Phycology.

[16]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[17]  V. Zachleder,et al.  Effect of irradiance on the course of RNA synthesis in the cell cycle ofScenedesmus quadricauda , 1982, Biologia Plantarum.

[18]  T. Řezanka,et al.  Unusual and very long-chain fatty acids produced by Basidiomycetes. , 1987, Journal of chromatography.

[19]  G. Wolfe,et al.  PRODUCTION AND CELLULAR LOCALIZATION OF NEUTRAL LONG‐CHAIN LIPIDS IN THE HAPTOPHYTE ALGAE ISOCHRYSIS GALBANA AND EMILIANIA HUXLEYI 1 , 2005 .

[20]  Francesca Venturi,et al.  Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. , 2005 .

[21]  K. Gao,et al.  Response of Growth and Fatty Acid Compositions of Nannochloropsis sp. to Environmental Factors Under Elevated CO2 Concentration , 2006, Biotechnology Letters.

[22]  J. Doucha,et al.  Macromolecular syntheses and the course of cell cycle events in the chlorococcal algaScenedesmus quadricauda under nutrient starvation: Effect of nitrogen starvation , 1988, Biologia Plantarum.

[23]  A. Richmond,et al.  Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. , 1999 .

[24]  N. Sato,et al.  Upregulation of PG synthesis on sulfur-starvation for PS I in Chlamydomonas. , 2008, Biochemical and biophysical research communications.

[25]  A. Ben‐Amotz,et al.  CHEMICAL PROFILE OF SELECTED SPECIES OF MICROALGAE WITH EMPHASIS ON LIPIDS 1 , 1985 .

[26]  P. Shrestha,et al.  NITROGEN STARVATION INDUCES THE ACCUMULATION OF ARACHIDONIC ACID IN THE FRESHWATER GREEN ALGA PARIETOCHLORIS INCISA (TREBUXIOPHYCEAE) 1 , 2002 .

[27]  T. Řezanka Identification of very long polyenoic acids as picolinyl esters by Ag+ ion-exchange high-performance liquid chromatography, reversed-phase high-performance liquid chromatography and gas chromatography—mass spectrometry , 1990 .

[28]  E. Mercer,et al.  Sterols, sterol esters and fatty acids of Botrydium granulatum, Tribonema aequale and Monodus subterraneus , 1974 .

[29]  Y. Carmeli,et al.  REGULATION OF FATTY ACID COMPOSITION BY IRRADIANCE LEVEL IN THE EUSTIGMATOPHYTE NANNOCHLOROPSIS SP. 1 , 1989 .

[30]  D. Hall,et al.  Production of eicosapentaenoic acid (EPA) in Monodus subterraneus grown in a helical tubular photobioreactor as affected by cell density and light intensity , 2001, Journal of Applied Phycology.

[31]  A. Otero,et al.  Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae , 1997, Journal of Applied Phycology.

[32]  J. Pérez,et al.  n-3 PUFA productivity in chemostat cultures of microalgae , 1993, Applied Microbiology and Biotechnology.

[33]  O. Ward,et al.  Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions , 1991, Applied and environmental microbiology.

[34]  F. G. Fernández,et al.  Photolimitation and photoinhibition as factors determining optimal dilution rate to produce eicosapentaenoic acid from cultures of the microalga Isochrysis galbana , 1998, Applied Microbiology and Biotechnology.

[35]  Robert Staub Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens DC. , 1961 .