On the Privacy Preserving Mining Association Rules by using Randomization

We study on the privacy preserving data mining, PPDM for short, by using randomization. The theoretical PPDM based on the secure multi-party computation techniques is not practical for its computational inefficiency. So we concentrate on a practical PPDM, especially randomization technique. We survey various privacy measures and study on the privacy preserving mining of association rules by using randomization. We propose a new randomization operator, binomial selector, for privacy preserving technique of association rule mining. A binomial selector is a special case of a select-a-size operator by Evfimievski et al.[3]. Moreover we present some simulation results of detecting an appropriate parameter for a binomial selector. The randomization by a so-called cut-and-paste method in [3] is not efficient and has high variances on recovered support values for large item-sets. Our randomization by a binomial selector make up for this defects of cut-and-paste method.