Cell cycle Start is coupled to entry into the yeast metabolic cycle across diverse strains and growth rates

The interaction of two oscillators (cell division cycle and yeast metabolic cycle) with different frequencies is studied. Cell cycle Start is coupled with the initiation of high oxygen consumption and breakdown of storage carbohydrates across diverse strains and different growth rates.

[1]  Carl Hirschie Johnson,et al.  Circadian clocks and cell division , 2010, Cell cycle.

[2]  F. García-Ochoa,et al.  Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. , 2009, Biotechnology advances.

[3]  Zhaojun Xu,et al.  A potential mechanism of energy‐metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae , 2006, The FEBS journal.

[4]  H. Meyenburg Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth , 2004, Archiv für Mikrobiologie.

[5]  H. Kitano,et al.  Regulation of yeast oscillatory dynamics , 2007, Proceedings of the National Academy of Sciences.

[6]  A. Csikász-Nagy,et al.  Circadian rhythms synchronize mitosis in Neurospora crassa , 2014, Proceedings of the National Academy of Sciences.

[7]  Steven L McKnight,et al.  Restriction of DNA Replication to the Reductive Phase of the Metabolic Cycle Protects Genome Integrity , 2007, Science.

[8]  D. Murray,et al.  A genomewide oscillation in transcription gates DNA replication and cell cycle. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Rosbash,et al.  The Implications of Multiple Circadian Clock Origins , 2009, PLoS biology.

[10]  David Lloyd,et al.  Respiratory oscillations in yeasts. , 2008, Advances in experimental medicine and biology.

[11]  H. Kuriyama,et al.  Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol. , 1996, FEMS microbiology letters.

[12]  David Lloyd,et al.  Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. , 2003, Experimental cell research.

[13]  D. Botstein,et al.  Metabolic cycling without cell division cycling in respiring yeast , 2011, Proceedings of the National Academy of Sciences.

[14]  R. Heinrich,et al.  Mathematical analysis of a mechanism for autonomous metabolic oscillations in continuous culture of Saccharomyces cerevisiae , 2001, FEBS letters.

[15]  Felix Naef,et al.  Circadian Gene Expression in Individual Fibroblasts Cell-Autonomous and Self-Sustained Oscillators Pass Time to Daughter Cells , 2004, Cell.

[16]  Andrzej Kudlicki,et al.  Let the data speak , 2006, Nature Reviews Molecular Cell Biology.

[17]  David O. Morgan,et al.  The Cell Cycle: Principles of Control , 2014 .

[18]  L. Hartwell,et al.  Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division , 1977, The Journal of cell biology.

[19]  H. Kuriyama,et al.  Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. , 1992, FEMS microbiology letters.

[20]  K. McDonald,et al.  Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism , 1990, Biotechnology and bioengineering.

[21]  B. Binder,et al.  Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Tu,et al.  Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae , 2013, Proceedings of the National Academy of Sciences.

[23]  Peter Krusche,et al.  Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle , 2014, Proceedings of the National Academy of Sciences.

[24]  Armin Fiechter,et al.  Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae , 2004, Archiv für Mikrobiologie.

[25]  E Mochan,et al.  Respiratory oscillations in adapting yeast cultures. , 1973, Nature: New biology.

[26]  E. Boczko,et al.  Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast , 2008, Proceedings of the National Academy of Sciences.

[27]  R. E. Wilson,et al.  Fermentation Process Control, Population Dynamics of a Continuous Propagator for Microorganisms , 1954 .

[28]  H C Lim,et al.  Induction and elimination of oscillations in continuous cultures of Saccharomyces cerevisiae , 1986, Biotechnology and bioengineering.

[29]  M. Reuss,et al.  Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae , 2003, Yeast.

[30]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[31]  Steven B Haase,et al.  Improved Flow Cytometric Analysis of the Budding Yeast Cell Cycle , 2002, Cell cycle.

[32]  A. Kudlicki,et al.  Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular Processes , 2005, Science.

[33]  Rainer Machné,et al.  The Yin and Yang of Yeast Transcription: Elements of a Global Feedback System between Metabolism and Chromatin , 2012, PloS one.

[34]  Douglas B. Murray The respiratory oscillation in yeast phase definitions and periodicity , 2006, Nature Reviews Molecular Cell Biology.

[35]  S. Cortassa,et al.  The onset of fermentative metabolism in continuous cultures depends on the catabolite repression properties of saccharomyces cerevisiae , 1998 .

[36]  Steven H. Strogatz,et al.  Synchronization: A Universal Concept in Nonlinear Sciences , 2003 .

[37]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[38]  S. Gygi,et al.  Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution , 2009, Science.

[39]  David Botstein,et al.  Nutritional homeostasis in batch and steady-state culture of yeast. , 2004, Molecular biology of the cell.

[40]  Ronald W. Davis,et al.  Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. , 1994, Genetics.

[41]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[42]  Masaru Tomita,et al.  Time resolved DNA occupancy dynamics during the respiratory oscillation uncover a global reset point in the yeast growth program , 2014, Microbial cell.

[43]  E. Boczko,et al.  Clustering in cell cycle dynamics with general response/signaling feedback. , 2012, Journal of theoretical biology.

[44]  N. Shackleton,et al.  Non-equilibrium Isotopic Fractionation between Seawater and Planktonic Foraminiferal Tests , 1973, Nature.

[45]  G C Johnston,et al.  Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. , 1977, Experimental cell research.

[46]  H. Kuriyama,et al.  Synchronization affector of autonomous short‐period‐sustained oscillation of Saccharomyces cerevisiae , 1996, Yeast.

[47]  B. Futcher Metabolic cycle, cell cycle, and the finishing kick to Start , 2006, Genome Biology.

[48]  L. Hartwell,et al.  Genetic control of the cell division cycle in yeast. , 1974, Science.

[49]  F. Corellou,et al.  Integration of Light Signals by the Retinoblastoma Pathway in the Control of S Phase Entry in the Picophytoplanktonic Cell Ostreococcus , 2010, PLoS genetics.

[50]  D. Botstein,et al.  Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast , 2011, Molecular biology of the cell.

[51]  A. Murray,et al.  Can sequencing shed light on cell cycling? , 2001, Nature.

[52]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[53]  B. Tu,et al.  Trehalose Is a Key Determinant of the Quiescent Metabolic State That Fuels Cell Cycle Progression upon Return to Growth , 2010, Molecular biology of the cell.

[54]  H. Sohn,et al.  Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase , 2001, Yeast.

[55]  David Botstein,et al.  Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate , 2010, Proceedings of the National Academy of Sciences.

[56]  Tetsuya Mori,et al.  Independence of Circadian Timing from Cell Division in Cyanobacteria , 2001, Journal of bacteriology.

[57]  L. Alberghina,et al.  Oscillations in continuous cultures of budding yeast: A segregated parameter analysis , 1988, Biotechnology and bioengineering.

[58]  Kara Dolinski,et al.  Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. , 2005, Molecular biology of the cell.

[59]  L. Alberghina,et al.  Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast , 1990, Biotechnology and bioengineering.

[60]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[61]  L. Kruglyak,et al.  Genetic Basis of Metabolome Variation in Yeast , 2014, PLoS genetics.

[62]  P. Sniegowski,et al.  Mate choice assays and mating propensity differences in natural yeast populations , 2006, Biology Letters.

[63]  D. Botstein,et al.  Monitoring Editor , 2011 .

[64]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[65]  A. Nakano,et al.  Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote , 2014, Nature Communications.

[66]  David Lloyd,et al.  The ultradian clock: not to be confused with the cell cycle , 2006, Nature Reviews Molecular Cell Biology.

[67]  Felix Naef,et al.  Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells , 2014, Molecular systems biology.