Mel cepstral coefficient modification based on the Glimpse Proportion measure for improving the intelligibility of HMM-generated synthetic speech in noise

We propose a method that modifies the Mel cepstral coefficients of HMM-generated synthetic speech in order to increase the intelligibility of the generated speech when heard by a listener in the presence of a known noise. This method is based on an approximation we previously proposed for the Glimpse Proportion measure. Here we show how to update the Mel cepstral coefficients using this measure as an optimization criterion and how to control the amount of distortion by limiting the frequency resolution of the modifications. To evaluate the method we built eight different voices from normal read-text speech data from a male speaker. Some voices were also built from Lombard speech data produced by the same speaker. Listening experiments with speech-shaped noise and with a single competing talker indicate that our method significantly improves intelligibility when compared to unmodified synthetic speech. The voices built from Lombard speech outperformed the proposed method particularly for the competing talker case. However, compared to a voice using only the spectral parameters from Lombard speech, the proposed method obtains similar or higher performance.

[1]  Peter Vary,et al.  Near End Listening Enhancement: Speech Intelligibility Improvement in Noisy Environments , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[2]  Keiichi Tokuda,et al.  A Speech Parameter Generation Algorithm Considering Global Variance for HMM-Based Speech Synthesis , 2007, IEICE Trans. Inf. Syst..

[3]  Wouter A. Dreschler,et al.  ICRA Noises: Artificial Noise Signals with Speech-like Spectral and Temporal Properties for Hearing Instrument Assessment: Ruidos ICRA: Señates de ruido artificial con espectro similar al habla y propiedades temporales para pruebas de instrumentos auditivos , 2001 .

[4]  W. Dreschler,et al.  ICRA noises: artificial noise signals with speech-like spectral and temporal properties for hearing instrument assessment. International Collegium for Rehabilitative Audiology. , 2001, Audiology : official organ of the International Society of Audiology.

[5]  Simon King,et al.  Can Objective Measures Predict the Intelligibility of Modified HMM-Based Synthetic Speech in Noise? , 2011, INTERSPEECH.

[6]  Keiichi Tokuda,et al.  An adaptive algorithm for mel-cepstral analysis of speech , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  IEEE Recommended Practice for Speech Quality Measurements , 1969, IEEE Transactions on Audio and Electroacoustics.

[8]  Heiga Zen,et al.  Cepstral analysis based on the glimpse proportion measure for improving the intelligibility of HMM-based synthetic speech in noise , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  Martin Cooke,et al.  A glimpsing model of speech perception in noise. , 2006, The Journal of the Acoustical Society of America.

[10]  Paavo Alku,et al.  Analysis of HMM-Based Lombard Speech Synthesis , 2011, INTERSPEECH.

[11]  Hideki Kawahara,et al.  Restructuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F0 extraction: Possible role of a repetitive structure in sounds , 1999, Speech Commun..