CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU

Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front-and backsided, slow and fast CMEs (up to 2700 km s(-1)). We track the CMEs to 34.9 +/- 7.1 deg elongation from the Sun with J maps constructed using the SATPLOT tool, resulting in prediction lead times of - 26.4 +/- 15.3 hr. The geometrical models we use assume different CME front shapes (fixed-Phi, harmonic mean, self-similar expansion) and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1 +/- 6.3 hr (rms value of 10.9 hr). Speeds are consistent to within 284 +/- 288 km s(-1) . Empirical corrections to the predictions enhance their performance for the arrival times to 6.1 +/- 5.0 hr (rms value of 7.9 hr), and for the speeds to 53 +/- 50 km s(-1). These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.

[1]  Christopher T. Russell,et al.  Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections , 1999 .

[2]  D. Müller,et al.  Solar Orbiter , 2012, Solar Physics.

[3]  N. Lugaz,et al.  A SELF-SIMILAR EXPANSION MODEL FOR USE IN SOLAR WIND TRANSIENT PROPAGATION STUDIES , 2012 .

[4]  C. Russell,et al.  Reconstruction of the 2007 May 22 Magnetic Cloud: How Much Can We Trust the Flux-Rope Geometry of CMEs? , 2008 .

[5]  N. Lugaz,et al.  Determining CME parameters by fitting heliospheric observations: Numerical investigation of the accuracy of the methods , 2011 .

[6]  Y. Liu,et al.  AN ANALYSIS OF THE ORIGIN AND PROPAGATION OF THE MULTIPLE CORONAL MASS EJECTIONS OF 2010 AUGUST 1 , 2012 .

[7]  A. Galvin,et al.  STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010 , 2010, 1010.4150.

[8]  S. Solomon,et al.  Solar wind forcing at Mercury: WSA‐ENLIL model results , 2011 .

[9]  W. R. Cook,et al.  STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview , 2008 .

[10]  A. Galvin,et al.  Optimized Grad – Shafranov Reconstruction of a Magnetic Cloud Using STEREO-Wind Observations , 2009 .

[11]  P. Kintner,et al.  Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images , 2012, 1204.3813.

[12]  M. Temmer,et al.  Constraining the Kinematics of Coronal Mass Ejections in the Inner Heliosphere with In-Situ Signatures , 2011, 1110.0300.

[13]  Jie Zhang,et al.  Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005 , 2007 .

[14]  B. Anderson,et al.  MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE , 2012, 1209.2866.

[15]  A. B. Galvin,et al.  ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO STEREO OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION , 2011, The Astrophysical Journal.

[16]  D. Odstrcil,et al.  INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS , 2011, 1110.0827.

[17]  R. Trines,et al.  ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY , 2013 .

[18]  A. Vourlidas,et al.  Three-Dimensional Evolution of Erupted Flux Ropes from the Sun (2 – 20 R⊙) to 1 AU , 2012, 1211.2108.

[19]  J. Luhmann,et al.  Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection , 2010 .

[20]  A. Hundhausen,et al.  Observation of a coronal transient from 1.2 to 6 solar radii , 1985 .

[21]  N. Lugaz,et al.  Assessing the Constrained Harmonic Mean Method for Deriving the Kinematics of ICMEs with a Numerical Simulation , 2013, 1301.6945.

[22]  T. Howard,et al.  INNER HELIOSPHERIC FLUX ROPE EVOLUTION VIA IMAGING OF CORONAL MASS EJECTIONS , 2012 .

[23]  R. Howard,et al.  Continuous tracking of coronal outflows : Two kinds of coronal mass ejections , 1999 .

[24]  W. Gonzalez,et al.  The association of coronal mass ejections with their effects near the Earth , 2005 .

[25]  N. Lugaz,et al.  Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations , 2010, 1010.1949.

[26]  Austria,et al.  LINKING REMOTE IMAGERY OF A CORONAL MASS EJECTION TO ITS IN SITU SIGNATURES AT 1 AU , 2009, 0910.1188.

[27]  A. Vourlidas,et al.  DETERMINING THE AZIMUTHAL PROPERTIES OF CORONAL MASS EJECTIONS FROM MULTI-SPACECRAFT REMOTE-SENSING OBSERVATIONS WITH STEREO SECCHI , 2010, 1004.0945.

[28]  N. Gopalswamy,et al.  Predicting the 1‐AU arrival times of coronal mass ejections , 2001 .

[29]  N. Gopalswamy,et al.  Testing the empirical shock arrival model using quadrature observations , 2013, 1310.8510.

[30]  Y. Liu,et al.  RECONSTRUCTING CORONAL MASS EJECTIONS WITH COORDINATED IMAGING AND IN SITU OBSERVATIONS: GLOBAL STRUCTURE, KINEMATICS, AND IMPLICATIONS FOR SPACE WEATHER FORECASTING , 2010, 1009.1414.

[31]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[32]  J. Qiu,et al.  On the Magnetic Flux Budget in Low-Corona Magnetic Reconnection and Interplanetary Coronal Mass Ejections , 2007 .

[33]  P. Liewer,et al.  Stereoscopic Analysis of STEREO/SECCHI Data for CME Trajectory Determination , 2011 .

[34]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[35]  A. Vourlidas,et al.  The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations , 2006 .

[36]  J. Luhmann,et al.  STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period , 2009 .

[37]  J. Qiu,et al.  Magnetic Reconnection Flux and Coronal Mass Ejection Velocity , 2005 .

[38]  Y. Liu,et al.  Heliospheric Imaging of 3D Density Structures During the Multiple Coronal Mass Ejections of Late July to Early August 2010 , 2013 .

[39]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[40]  Science,et al.  USING COORDINATED OBSERVATIONS IN POLARIZED WHITE LIGHT AND FARADAY ROTATION TO PROBE THE SPATIAL POSITION AND MAGNETIC FIELD OF AN INTERPLANETARY SHEATH , 2013, 1308.3376.

[41]  N. Srivastava,et al.  ESTIMATING THE ARRIVAL TIME OF EARTH-DIRECTED CORONAL MASS EJECTIONS AT IN SITU SPACECRAFT USING COR AND HI OBSERVATIONS FROM STEREO , 2013, 1306.1397.

[42]  J. Davies,et al.  Deriving solar transient characteristics from single spacecraft STEREO/HI elongation variations: a theoretical assessment of the technique , 2009 .

[43]  J. Jost,et al.  The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories , 2008 .

[44]  B. Vršnak,et al.  Transit times of interplanetary coronal mass ejections and the solar wind speed , 2007 .

[45]  Jackie A. Davies,et al.  OBSERVATIONAL EVIDENCE OF A CORONAL MASS EJECTION DISTORTION DIRECTLY ATTRIBUTABLE TO A STRUCTURED SOLAR WIND , 2010 .

[46]  J. Luhmann,et al.  INTERACTIONS BETWEEN CORONAL MASS EJECTIONS VIEWED IN COORDINATED IMAGING AND IN SITU OBSERVATIONS , 2012, 1201.2968.

[47]  N. Lugaz,et al.  ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS , 2013, 1304.3777.

[48]  S. Poedts,et al.  Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass Ejections , 2012, 1209.6394.

[49]  A. Vourlidas,et al.  Modeling of Flux Rope Coronal Mass Ejections , 2006 .

[50]  P. Démoulin,et al.  Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation , 2013, 1305.4039.

[51]  V. Yurchyshyn,et al.  Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta , 2005 .

[52]  A. Vourlidas,et al.  Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data , 2009 .

[53]  Y. Liu,et al.  CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME–CME INTERACTION EVENT , 2012, 1202.0629.

[54]  N. Lugaz,et al.  Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere - application to CME-CME interaction , 2009, 0909.0534.

[55]  J. Luhmann,et al.  Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun , 2009 .

[56]  A. Rouillard Relating white light and in situ observations of coronal mass ejections: A review , 2011 .

[57]  M. Lockwood,et al.  First imaging of corotating interaction regions using the STEREO spacecraft , 2008 .

[58]  J. A. Davies,et al.  Speeds and Arrival Times of Solar Transients Approximated by Self-similar Expanding Circular Fronts , 2012, 1202.1299.

[59]  Christopher J. Davis,et al.  A comparison of space weather analysis techniques used to predict the arrival of the Earth‐directed CME and its shockwave launched on 8 April 2010 , 2011 .

[60]  Mike Lockwood,et al.  Stereoscopic imaging of an Earth‐impacting solar coronal mass ejection: A major milestone for the STEREO mission , 2009 .

[61]  M. Owens,et al.  Effects of Thomson-Scattering Geometry on White-Light Imaging of an Interplanetary Shock: Synthetic Observations from Forward Magnetohydrodynamic Modelling , 2012, 1205.0350.

[62]  C. Lintott,et al.  Observational Tracking of the 2D Structure of Coronal Mass Ejections Between the Sun and 1 AU , 2012, 1503.08774.

[63]  M. Lockwood,et al.  A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft , 2009 .

[64]  Y. Moon,et al.  Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model , 2013 .

[65]  A. Vourlidas,et al.  How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs , 2012, 1207.1599.

[66]  J. Luhmann,et al.  SOLAR SOURCE AND HELIOSPHERIC CONSEQUENCES OF THE 2010 APRIL 3 CORONAL MASS EJECTION: A COMPREHENSIVE VIEW , 2011 .

[67]  J. Davies,et al.  A COMPARISON OF RECONSTRUCTION METHODS FOR THE ESTIMATION OF CORONAL MASS EJECTIONS KINEMATICS BASED ON SECCHI/HI OBSERVATIONS , 2014, 1407.8446.

[68]  R. Howard,et al.  RECONSTRUCTING THE MORPHOLOGY OF AN EVOLVING CORONAL MASS EJECTION , 2010 .

[69]  Y. Liu,et al.  GEOMETRIC TRIANGULATION OF IMAGING OBSERVATIONS TO TRACK CORONAL MASS EJECTIONS CONTINUOUSLY OUT TO 1 AU , 2010, 1001.1352.

[70]  N. Gopalswamy,et al.  CME interactions with coronal holes and their interplanetary consequences , 2009 .

[71]  A. Vourlidas,et al.  THE FIRST OBSERVATION OF A RAPIDLY ROTATING CORONAL MASS EJECTION IN THE MIDDLE CORONA , 2011 .

[72]  E. Kilpua,et al.  Estimating Travel Times of Coronal Mass Ejections to 1 AU Using Multi-spacecraft Coronagraph Data , 2012, Solar Physics.

[73]  T. Zurbuchen,et al.  Internal structure of magnetic clouds: Plasma and composition , 2003 .

[74]  John W. Belcher,et al.  A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU , 2005 .

[75]  P. Kintner,et al.  Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008 – 2010: Lessons for Future Observations of Earth-Directed CMEs , 2012, 1205.2526.

[76]  A. Galvin,et al.  Consequences of the force-free model of magnetic clouds for their heliospheric evolution , 2007 .