Algebraic complexity of computing polynomial zeros

[1]  T. B.,et al.  The Theory of Determinants , 1904, Nature.

[2]  A. Spitzbart,et al.  Inverses of Vandermonde Matrices , 1958 .

[3]  D. H. Lehmer A Machine Method for Solving Polynomial Equations , 1961, JACM.

[4]  Harlan D. Mills,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[5]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[6]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[7]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[8]  Alfred V. Aho,et al.  Evaluating Polynomials at Fixed Sets of Points , 1975, SIAM J. Comput..

[9]  Paul Turán Power sum method and the approximative solution of algebraic equations , 1975 .

[10]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[11]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[12]  John E. Savage,et al.  The Complexity of Computing , 1976 .

[13]  David Y. Y. Yun,et al.  Algebraic algorithms using p-adic constructions , 1976, SYMSAC '76.

[14]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[15]  E. W. Ng Symbolic and Algebraic Computation , 1979, Lecture Notes in Computer Science.

[16]  V.Ya. Pan The bit-operation complexity of matrix multiplication and of all pair shortest path problem , 1981 .

[17]  Maurice Mignotte,et al.  Some inequalities about univariate polynomials , 1981, SYMSAC '81.

[18]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[19]  J. Hopcroft,et al.  Fast parallel matrix and GCD computations , 1982, FOCS 1982.

[20]  Victor Y. Pan,et al.  The Bit Operation Complexity of Approximate Evaluation of Matrix and Polynomial Products Using Modular Arithmetic , 1982 .

[21]  Victor Y. Pan,et al.  How to Multiply Matrices Faster , 1984, Lecture Notes in Computer Science.

[22]  Dario Bini,et al.  Parallel Solution of Certain Toeplitz Linear Systems , 1984, SIAM J. Comput..

[23]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[24]  Paul Turán,et al.  On a new method of analysis and its applications , 1984 .

[25]  V. Pan On application of some recent techniques of the design of algebraic algorithms to the sequential and parallel evaluation of the roots of a polynomial and to some other numerical problems , 1985 .

[26]  Walter Keller-Gehrig,et al.  Fast Algorithms for the Characteristic Polynomial , 1985, Theor. Comput. Sci..

[27]  S. Smale,et al.  Computational complexity: on the geometry of polynomials and a theory of cost. I , 1985 .

[28]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[29]  Charles M. Fiduccia,et al.  An Efficient Formula for Linear Recurrences , 1985, SIAM J. Comput..

[30]  Victor Y. Pan,et al.  Polynomial division and its computational complexity , 1986, J. Complex..

[31]  Ephraim Feig,et al.  A fast parallel algorithm for determining all roots of a polynomial with real roots , 1986, STOC '86.

[32]  Stephen Smale,et al.  Computational Complexity: On the Geometry of Polynomials and a Theory of Cost: II , 1986, SIAM J. Comput..

[33]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[34]  V. Pan Sequential and parallel complexity of approximate evaluation of polynomial zeros , 1987 .

[35]  James Renegar,et al.  On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..

[36]  Victor Y. Pan,et al.  Complexity of Parallel Matrix Computations , 1987, Theor. Comput. Sci..