A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization

A new primal-dual interior-point algorithm applicable to nonsymmetric conic optimization is proposed. It is a generalization of the famous algorithm suggested by Nesterov and Todd for the symmetric conic case, and uses primal-dual scalings for nonsymmetric cones proposed by Tuncel. We specialize Tuncel’s primal-dual scalings for the important case of 3 dimensional exponential-cones, resulting in a practical algorithm with good numerical performance, on level with standard symmetric cone (e.g., quadratic cone) algorithms. A significant contribution of the paper is a novel higher-order search direction, similar in spirit to a Mehrotra corrector for symmetric cone algorithms. To a large extent, the efficiency of our proposed algorithm can be attributed to this new corrector.

[1]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[2]  Michael J. Todd,et al.  Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems , 1999, Math. Program..

[3]  Tor G. J. Myklebust On primal-dual interior-point algorithms for convex optimisation , 2015 .

[4]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[5]  Levent Tunçel,et al.  Generalization of Primal—Dual Interior-Point Methods to Convex Optimization Problems in Conic Form , 2001, Found. Comput. Math..

[6]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[7]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[8]  Yinyu Ye,et al.  A homogeneous interior-point algorithm for nonsymmetric convex conic optimization , 2014, Mathematical Programming.

[9]  Yurii Nesterov,et al.  Local Superlinear Convergence of Polynomial-Time Interior-Point Methods for Hyperbolicity Cone Optimization Problems , 2016, SIAM J. Optim..

[10]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[11]  Stephen P. Boyd,et al.  ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).

[12]  Yurii Nesterov,et al.  Towards non-symmetric conic optimization , 2012, Optim. Methods Softw..

[13]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[14]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[15]  Levent Tunçel,et al.  Primal-Dual Interior-Point Methods for Domain-Driven Formulations: Algorithms , 2018 .

[16]  Russell Bent,et al.  Extended Formulations in Mixed-Integer Convex Programming , 2015, IPCO.

[17]  Levent Tunçel,et al.  “Cone-free” primal-dual path-following and potential-reduction polynomial time interior-point methods , 2005, Math. Program..

[18]  T. Tsuchiya,et al.  On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .

[19]  Osman Güler,et al.  Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..

[20]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[21]  A. Nemirovski Advances in convex optimization : conic programming , 2005 .

[22]  Robert Chares Cones and interior-point algorithms for structured convex optimization involving powers andexponentials , 2009 .

[23]  K. Anstreicher,et al.  On the convergence of an infeasible primal-dual interior-point method for convex programming , 1994 .

[24]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[25]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[26]  Tor G. J. Myklebust,et al.  Interior-point algorithms for convex optimization based on primal-dual metrics , 2014, 1411.2129.

[27]  R. Schnabel Quasi-Newton Methods Using Multiple Secant Equations. , 1983 .

[28]  Yinyu Ye,et al.  On a homogeneous algorithm for the monotone complementarity problem , 1999, Math. Program..