Dynamics of Defect Motion in Nematic Liquid Crystal Flow: Modeling and Numerical Simulation

The annihilation of a hedgehog-antihedgehog pair in hydrodynamics of (elastically isotropic) nematic liquid crystal materials is modeled using the Ericksen-Leslie theory which results in a nonlinear system for the flow velocity field and liquid crystal director field coupled through the transport of the directional order parameter and the induced elastic stress. An ecient and accurate numerical scheme is presented and implemented for this coupled nonlinear system in an axi-symmetric domain. Numerical simulations of annihilation of a hedgehog-antihedgehog pair with dierent types of transport are presented. In particular, it is shown that the stretching parameter in the transport equation contributes to the symmetry breaking of the pair’s moving speed during the dynamics of annihilation.

[1]  Eliot Fried,et al.  The evolution equation for a disclination in a nematic liquid crystal , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[3]  Masao Doi,et al.  Constitutive Equation for Nematic Liquid Crystals under Weak Velocity Gradient Derived from a Molecular Kinetic Equation , 1983 .

[4]  NOEL J. WALKINGTON,et al.  An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2001 .

[5]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[6]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[7]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[8]  Jie Shen,et al.  On liquid crystal flows with free-slip boundary conditions , 2001 .

[9]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[10]  Jie Shen,et al.  Mode interactions in an enclosed swirling flow: a double Hopf bifurcation between azimuthal wavenumbers 0 and 2 , 2002, Journal of Fluid Mechanics.

[11]  Jie Shen,et al.  On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..

[12]  Ping Zhang,et al.  On hydrodynamics of viscoelastic fluids , 2005 .

[13]  P. Cladis,et al.  Hedgehog–antihedgehog pair annihilation to a static soliton , 2003 .

[14]  Jie Shen,et al.  An Efficient Spectral-Projection Method for the Navier-Stokes Equations in Cylindrical Geometries , 2002 .

[15]  Noel J. Walkington,et al.  Digital Object Identifier (DOI) 10.1007/s002050100158 An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2022 .

[16]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[17]  A. Sonnet,et al.  Elastic forces on nematic point defects , 2002 .

[18]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[19]  Jie Shen,et al.  An Efficient Spectral-Projection Method for the Navier–Stokes Equations in Cylindrical Geometries: I. Axisymmetric Cases , 1998 .

[20]  F. M A R Q U E S,et al.  Mode interactions in an enclosed swirling flow : a double Hopf bifurcation between azimuthal wavenumbers 0 and 2 , 2001 .

[21]  S. Kralj,et al.  Annihilation of nematic point defects: Pre-collision and post-collision evolution , 2006, The European physical journal. E, Soft matter.