Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocity-dependent collision frequency

In this paper, an ellipsoidal statistical (ES) Bhatnagar–Gross–Krook (BGK)-type kinetic model with velocity-dependent collision frequency is proposed and further numerically tested for one-dimensional shock waves and planar Couette flow at steady state for hard sphere molecules. In this new kinetic model, a physically meaningful expression for the velocity-dependent collision frequency derived from the Boltzmann equation is used, while the important properties for a kinetic model are retained at the same time. This kinetic model can be simplified to the classical ES-BGK model and the BGK model with velocity-dependent collision frequency for suitable choices of parameters. The H theorem for this new kinetic model has so far been proven only for small Knudsen numbers. The numerical method used here for kinetic models is based on Mieussens’s discrete velocity model [L. Mieussens, J. Comput. Phys. 162, 429 (2000)]. Computational results from the kinetic models (including the BGK model, the ES-BGK model, the B...

[1]  H. C. Yee Construction of explicit and implicit symmetric TVD schemes and their applications. [Total Variation Diminishing for fluid dynamics computation] , 1987 .

[2]  Henning Struchtrup,et al.  Macroscopic transport equation for rarefied gas flows : approximation methods in kinetic theory , 2005 .

[3]  François Bouchut,et al.  A BGK model for small Prandtl number in the Navier-Stokes approximation , 1993 .

[4]  M. L. Haro,et al.  KINETIC MODEL FOR HEAT AND MOMENTUM TRANSPORT , 1994 .

[5]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[6]  Yingsong Zheng,et al.  Analysis of kinetic models and macroscopic continuum equations for rarefied gas dynamics , 2004 .

[7]  J. Brey,et al.  Solution of the BGK model kinetic equation for very hard particle interaction , 1984 .

[8]  William H. Press,et al.  Numerical recipes , 1990 .

[9]  Benoît Perthame,et al.  The ES-BGK model equation with correct Prandtl number , 2002 .

[10]  L. Mieussens Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries , 2000 .

[11]  Luc Mieussens,et al.  DISCRETE VELOCITY MODEL AND IMPLICIT SCHEME FOR THE BGK EQUATION OF RAREFIED GAS DYNAMICS , 2000 .

[12]  J. Zierep,et al.  Recent developments in theoretical and experimental fluid mechanics : compressible and incompressible flows , 1979 .

[13]  Luc Mieussens,et al.  Numerical comparison of Bhatnagar–Gross–Krook models with proper Prandtl number , 2004 .

[14]  V. Garzó Perturbative solution of the BGK equation for very hard particle interaction , 1988 .

[15]  Henning Struchtrup,et al.  Kinetic schemes and boundary conditions for moment equations , 2000 .

[16]  C. Cercignani Knudsen Layers. Theory and Experiment , 1979 .

[17]  Felix Sharipov,et al.  Data on Internal Rarefied Gas Flows , 1998 .

[18]  Reinhard Illner,et al.  A convergence proof for Nanbu's simulation method for the full Boltzmann equation , 1989 .

[19]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[20]  Daniel A. Erwin,et al.  Testing continuum descriptions of low-Mach-number shock structures , 1991, Journal of Fluid Mechanics.

[21]  H. Struchtrup The BGK-model with velocity-dependent collision frequency , 1997 .

[22]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[23]  C. David Levermore,et al.  Entropy-based moment closures for kinetic equations , 1997 .

[24]  Luc Mieussens,et al.  Convergence of a discrete-velocity model for the Boltzmann-BGK equation , 2001 .

[25]  P. Tallec A Hierarchy of Hyperbolic Models Linking Boltzmann to Navier Stokes Equations for Polyatomic Gases , 2000 .

[26]  V. Garzó,et al.  Kinetic Theory of Gases in Shear Flows , 2003 .

[27]  E. M. Shakhov Generalization of the Krook kinetic relaxation equation , 1968 .

[28]  Guangjun Liu,et al.  A method for constructing a model form for the Boltzmann equation , 1990 .

[29]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .

[30]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[31]  Taku Ohwada,et al.  Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard-sphere molecules , 1993 .

[32]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[33]  The temperature-jump problem for a variable collision frequency model , 2002 .

[34]  Gaussian kinetic model for granular gases. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  C. Cercignani Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations , 2000 .

[36]  H. Gg. Wagner,et al.  Walter G. Vincenti und Charles H. Krüger, Jr.: Introduction to Physical Gas Dynamics. John Wiley & Sons, New York, London, Sidney 1965. 538 Seiten. Preis: 102/— , 1966, Berichte der Bunsengesellschaft für physikalische Chemie.

[37]  Lowell H. Holway,et al.  New Statistical Models for Kinetic Theory: Methods of Construction , 1966 .

[38]  Henning Struchtrup,et al.  Burnett equations for the ellipsoidal statistical BGK model , 2004 .