Non-existence of non-constant positive steady states of two Holling type-II predator–prey systems: Strong interaction case

Abstract We prove the non-existence of non-constant positive steady state solutions of two reaction–diffusion predator–prey models with Holling type-II functional response when the interaction between the predator and the prey is strong. The result implies that the global bifurcating branches of steady state solutions are bounded loops.

[1]  Sze-Bi Hsu,et al.  Relaxation , 2021, Graduate Studies in Mathematics.

[2]  C. Huffaker Experimental studies on predation : dispersion factors and predator-prey oscillations , 1958 .

[3]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[4]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[5]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[6]  Yihong Du,et al.  Some Recent Results on Diffusive Predator-prey Models in Spatially Heterogeneous Environment ∗ † , 2005 .

[7]  Anthony W. Leung,et al.  Limiting behaviour for a prey-predator model with diffusion and crowding effects , 1978 .

[8]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[9]  Josep Blat,et al.  Global bifurcation of positive solutions in some systems of elliptic equations , 1986 .

[10]  L. Segel,et al.  Hypothesis for origin of planktonic patchiness , 1976, Nature.

[11]  Junjie Wei,et al.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .

[12]  Alan Hastings,et al.  Global stability of two species systems , 1977 .

[13]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[14]  Sze-Bi Hsu,et al.  Relaxation oscillation profile of limit cycle in predator-prey system , 2009 .

[15]  Junping Shi,et al.  On global bifurcation for quasilinear elliptic systems on bounded domains , 2009 .

[16]  Yihong Du,et al.  Allee effect and bistability in a spatially heterogeneous predator-prey model , 2007 .

[17]  Wonlyul Ko,et al.  Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge , 2006 .

[18]  F. Rothe Convergence to the equilibrium state in the Volterra-Lotka diffusion equations , 1976, Journal of mathematical biology.

[19]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[20]  Jaeduck Jang,et al.  Global Bifurcation and Structure of Turing Patterns in the 1-D Lengyel–Epstein Model , 2004 .

[21]  William W. Murdoch,et al.  Consumer-resource dynamics , 2003 .

[22]  Rui Peng,et al.  Stationary Pattern of a Ratio-Dependent Food Chain Model with Diffusion , 2007, SIAM J. Appl. Math..

[23]  Rui Peng,et al.  Qualitative analysis of steady states to the Sel'kov model , 2007 .

[24]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[25]  Rui Peng,et al.  On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law , 2008 .

[26]  Rui Peng,et al.  Positive steady states of the Holling–Tanner prey–predator model with diffusion , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  John Wiley Spatial ecology via reaction-diffusion equations, by R. S. Cantrell and C. Cosner, , 2004 .

[28]  Junjie Wei,et al.  Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system , 2009, Appl. Math. Lett..

[29]  M. Mimura,et al.  On a diffusive prey--predator model which exhibits patchiness. , 1978, Journal of theoretical biology.

[30]  Yuan Lou,et al.  Qualitative behaviour of positive solutions of a predator—prey model: effects of saturation , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[32]  F. Rothe,et al.  Convergence to Homogeneous Equilibrium State for Generalized Volterra–Lotka Systems with Diffusion , 1979 .

[33]  Yuan Lou,et al.  S-Shaped Global Bifurcation Curve and Hopf Bifurcation of Positive Solutions to a Predator–Prey Model , 1998 .

[34]  Gary M. Lieberman,et al.  Bounds for the Steady-State Sel'kov Model for Arbitrary p in Any Number of Dimensions , 2005, SIAM J. Math. Anal..

[35]  P. Kareiva,et al.  Habitat fragmentation and the stability of predator–prey interactions , 1987, Nature.

[36]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[37]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[38]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[39]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[40]  Junjie Wei,et al.  Diffusion-driven instability and bifurcation in the Lengyel-Epstein system , 2008 .

[41]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[42]  西浦 廉政,et al.  Global structure of bifurcating solutions of some reaction-diffusion systems , 1982 .

[43]  Junping Shi Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models , 2009 .

[44]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[45]  Horst Malchow,et al.  Spatiotemporal Complexity of Plankton and Fish Dynamics , 2002, SIAM Rev..

[46]  Wei-Ming Ni,et al.  Large amplitude stationary solutions to a chemotaxis system , 1988 .